Manual XENAX ${ }^{\circledR}$ Xvi 75V8S

Edition 18. March 2024

Compact Ethernet Servo Controller

Etheri'et/IP
CANopen
ETHERNET I I II POWERLINK

Parameterization over Web browser

The integrated webserver allows a setup and parameterization over web browser. After an automatic self-check, the connected LINAX ${ }^{\circledR}$ linear motor axis, the ELAX ${ }^{\circledR}$ electric slide or the ROTAX ${ }^{\circledR}$ rotary axis can instantly be set in motion by click on the Quick Start Button.

This XENAX ${ }^{\circledR}$ Xvi 75V8S is setting new standards in terms of intuitive handling.

General

The XENAX ${ }^{\circledR}$ Xvi 75V8S Ethernet servo controller controls all series of the LINAX ${ }^{\circledR}$ linear motor axes, the ELAX ${ }^{\circledR}$ electric slide product family and the ROTAX ${ }^{\circledR}$ rotary axis. It is also possible to control servo motors series RAxx (ultra-compact rotary axes) and RT-xx (round table with hollow shaft).

Customary rotary AC/DC/EC servo motors for example from FAULHABER ${ }^{\circledR}$ or MAXON ${ }^{\circledR}$ can also be operated by the XENAX ${ }^{\circledR}$ Xvi 75 V 8 S .

The logic supply (24 V DC) and the intermediate circuit voltage ($24 \mathrm{~V}-75 \mathrm{~V}$ DC) are separately connectable. This is how
"Safety Torque Off" is possible as a standard.

Master-Slave function, Force Calibration (compensation of the cogging forces in iron core linear motors) and optional "Safety" functionalities such as SS1, SS2, or SLS are further features of this compact XENAX ${ }^{\circledR}$

Xvi 75V8S servo controller.

Alois Jenny
Jenny Science AG

Contents

1 Characteristics XENAX ${ }^{\circledR}$ Xvi 75V8S 7
1.1 Electronics / Firmware 7
1.2 Performance / Options 7
1.3 Dimensions 8
1.4 Xvi 75V8 versus Xvi 75V8S 9
2 Controllable Motor Types 10
2.1 Linear Motor Axes and Electric Slides 10
2.2 Servo Motors in our Product Line 10
2.3 Customary Servo Motors 11
3 Hardware and Installation 12
3.1 Environmental Conditions 12
3.2 Assembly and Installation 12
4 Functional Safety - TÜV certified 13
4.1 Hardware Requirements 13
4.2 Safety Standards 13
4.3 Basic Conditions 14
4.4 Technical Data Safety 15
4.5 Safety Functions 16
4.5.1 STO, Safe Torque Off 16
4.5.2 SS1, Safe Stop 1 17
4.5.3 SS2, Safe Stop 2 17
4.5.4 SLS, Safely Limited Speed 17
4.6 Functional Safety Parameterization in WebMotion ${ }^{\circledR}$ 18
4.6.1 Display Active Safety Parameters 18
4.6.2 Modification of Safety Parameters 18
5 UL 20
5.1 UL-Ratings 20
6 Electrical Connections 21
6.1 Plug Arrangement 21
6.2 Plug Pin Configuration 21
6.2.1 USB/COM 21
6.2.2 Motor Plug 3 Phase 22
6.2.3 Logic and Power Supply 22
6.2.4 Encoder and Hall Signals 23
6.2.5 Y-Cable for Encoder access 23
6.2.6 Definition of Rotating Direction for Servo Motors 23
6.2.7 OPTIO CAN, Pulse/Dir, Second Encoder Channel 24
6.2.8 PLC I/O 25
6.3 Internal I/O Circuit 26
6.4 Output Configuration 27
7 Configuration Motor Type Jenny Science / Motor customer specific 28
8 USB/COM Socket 29
8.1 USB Operation 29
8.2 RS232 Operation 29
9 ETHERNET TCP/IP Interface 30
9.1 Test IP Connection with >IPCONFIG 31
9.2 Test Connection with >PING 31
9.3 Close Port 10001 31
10 ASCII Protocol 32
10.1 ASCII Protocol TCP/IP 33
10.2 Asynchronous Messages (Events) 33
11 WebMotion ${ }^{\circledR}$ 34
11.1 Start WebMotion ${ }^{\circledR}$ 35
11.1.1 Error „Upload XENAX ${ }^{\circledR}$ Settings" 35
11.2 Quick Start (only with LINAX ${ }^{\circledR}$ and ELAX ${ }^{\circledR}$ linear motor axes) 36
11.3 Operation, Status Line 37
11.4 Move Axis by Click 38
11.4.1 Move Axis by Click for LINAX ${ }^{\circledR} /$ ELAX $^{\circledR}$ Linear Motors 38
11.4.2 Move Axis by Click for ROTAX ${ }^{\circledR}$ Rotary Motor or Third Party Motors 40
11.5 Move Axis by Command Line 41
11.6 ASCII Command Set for XENAX® 41
11.6.1 Power / Reset 41
11.6.2 Basic Settings 42
11.6.3 Motor Settings 42
11.6.4 Controller Settings 42
11.6.5 Motion Settings 43
11.6.6 Reference LINAX® / ELAX ${ }^{\circledR}$ 44
11.6.7 Reference Gantry 44
11.6.8 Reference Rotary Motors 44
11.6.9 Move Commands 45
11.6.10 Index (programmed movements) 46
11.6.11 Program / Application 46
11.6.12 Force Control Forceteq ${ }^{\circledR}$ basic 47
11.6.13 Force Control Forceteq ${ }^{\circledR}$ pro 49
11.6.14 Signateq ${ }^{\circledR}$ 51
11.6.15 Input / Output 52
11.6.16 Correction Table 53
11.6.17 Event 53
11.6.18 Limit Position ELAX ${ }^{\circledR}$ 54
11.6.19 System Information 55
11.6.20 Ethernet 56
11.6.21 Bus Module 56
11.6.22 DS402 Compatibility 56
11.6.23 Error Handling 57
11.6.24 System Monitoring 57
11.7 Move Axis by Forceteq ${ }^{\circledR}$ 58
11.8 Move Axis Motion Diagram 59
11.9 Index 61
11.10 Drive I_Force (Forceteq ${ }^{\circledR}$ basic) 62
11.11 Drive Force (Forceteq ${ }^{\circledR}$ pro) 62
11.12 Sector I_Force (Forceteq ${ }^{\circledR}$ basic) 63
11.13 Sector Force (Forceteq ${ }^{\circledR}$ pro) 63
11.14 Program 64
11.14.1 Program commands 65
11.15 I/O Functions 68
11.15.1 Selection of Input Functions 69
11.15.2 Selection Output Functions 71
11.15.3 Operation with Additional Holding Brake 71
11.16 Profile (Velocity) 72
11.17 Captured Pos 73
11.18 State Controller 74
11.18.1 F Setting 77
11.19 Motor 80
11.19.1 Motors LINAX ${ }^{\circledR}$ and ELAX ${ }^{\circledR}$ 80
11.19.2 Motor ROTAX ${ }^{\circledR}$ 81
11.19.3 Third Party Motors 82
11.19.4 Position Overflow 83
11.20 Reference 84
11.20.1 Reference LINAX ${ }^{\circledR}$ 84
11.20.2 Reference ELAX ${ }^{\circledR}$ 84
11.20.3 Reference ROTAX ${ }^{\circledR}$ und Third Party Motors 86
11.20.4 Reference to Mechanical Stop 87
11.20.5 Correction Table for LINAX ${ }^{\circledR}$ / ELAX ${ }^{\circledR}$ 88
11.21 Basic Settings 91
11.22 Load cell 92
11.22.1 Test Report 92
11.22.2 Custom Calibration 93
11.22.3 Factory Calibration 93
11.23 Version 94
11.24 Update Firmware 95
11.25 Save 96
11.26 Open 96
12 Master / Slave 97
12.1 Master/Slave Configuration 97
12.2 Programming example Pick\&Place 98
12.3 Timing Master / Slave 98
13 Gantry Synchronized Mode 99
13.1 Activate Gantry Mode 99
13.2 ASCII Commands for Gantry Synchronized Mode 100
13.3 HW Limit-Switch in Gantry-Setup 100
14 Forceteq ${ }^{\circledR}$ Force Measurement Technology 101
14.1 Forceteq ${ }^{\oplus}$ basic current based with self calibrated motor 101
14.2 Forceteq ${ }^{\circledR}$ pro precise with Signateq ${ }^{\circledR}$ and external load cell 102
14.3 Forceteq ${ }^{\oplus}$ basic via Realtime Bus 104
14.3.1 CANopen over Ethernet 104
14.3.2 Ethernet/IP 104
14.3.3 Profinet 104
14.4 Forceteq ${ }^{\circledR}$ basic via XENAX ${ }^{\circledR}$ 105
14.4.1 I_Force Calibration 105
14.4.2 I_Force Limitation 105
14.4.3 I_Force Monitoring 106
14.4.4 I_Force Control 107
14.4.5 Sector Offset for Touching Position 108
14.4.6 Application Example 109
14.5 Forceteq ${ }^{\circledR}$ pro via Realtime Bus 113
14.5.1 CANopen over Ethernet 113
14.5.2 Ethernet/IP 113
14.5.3 Profinet 113
14.6 Forceteq ${ }^{\circledR}$ pro via XENAX ${ }^{\circledR}$ 114
14.6.1 I_Force Calibration 114
14.6.2 Controller Settings 114
14.6.3 Force Limitation 114
14.6.4 Force Monitoring 115
14.6.5 Force Control 116
14.6.6 Sector Offset for Touching Position 117
15 Parameterization rotative third-party motor 118
15.1 Motorparameter with WebMotion 118
15.2 External load for state controller 120
15.3 Template parametersset for documentation 120
16 Operating Status on 7-Segment Display 121
17 Error Handling 122
17.1 Error Codes 122
17.2 Notes for Error 50 126
17.3 Notes for Error 89 127
17.4 Notes for Error 91 129
17.5 Arbitrary Display on 7-Segment 130
17.5.1 Defective adapter for logic supply 130
17.5.2 Defective Firmware 130

1 Characteristics XENAX ${ }^{\circledR}$ Xvi 75V8S

Bus, multi-axis operation

Operation Modes

Safety Motion Unit SMU

Status indication Input digital
Output digital Input function
Output function
Reference for rotary motors
Index
Profile
Number of application programs via input
Firmware update
Application and parameter update

1.1 Electronics / Firmware

Data
Ethernet, TCP/IP, http web server Puls/direction, Master Encoder, I/O I^{2} C Master/Slave, Start-up Key USB (standard) or RS232 (optional), CAN for Signateq ${ }^{\circledR}$ measuring amplifier
EtherCAT (CoE), DS402
Ethernet POWERLINK, DS402
CANopen, DS 402
PROFINET (PROFIdrive)
EtherNet/IP, DS402
Ethernet Switch, TCP/IP
Standard Servo (MODE 0)
Multi axis operation (Master/Slave, Gantry)
Electronic gear (MODE 1) optional
Pulse/Direction (MODE 2) optional
Security module, 2-channel monitoring TÜV certified

SIL 2 Safety Integrity Level 2
Cat 3 Category 3
PLd Performance Level d
MTTFd 1733313 h
7-Segment LED
$12 \times 24 \mathrm{~V}$ Pull down
$8 \times 24 \mathrm{~V}, 100 \mathrm{~mA}$ Source or 400 mA Sink 8 inputs to start a function or program 8 outputs to indicate a condition free to define, incl. external sensor 50 motion moves (accl. / speed / distance, position) 5 extended motion profiles with 7 profile segments each. 15 , Input 9-12 binary coded (MODE >=10)
Over TCP/IP, Flash-memory internal
Over TCP/IP, Flash-memory internal

1.2 Performance / Options

„LG" logic supply
„PW" power supply motor
$24 \mathrm{VDC} \pm 10 \% /$ max. 1.3 A
12-75VDC
3- Phase Output frequency
Nominal current
Peak current
Continuous power / dissipation loss
Temperature monitoring output stage
Excess voltage - observation
Under voltage - observation
$0-599 \mathrm{~Hz}$
0-8A
20A
Typical 48V / 3A / 150W / $\eta \approx 85 \% / P v=22 W$
Shutdown at $80^{\circ} \mathrm{C}$
$>85 \mathrm{~V}$
< 10V

Ballast circuit Fuse power	up to 80W 10AF
Motor temperature observation with LINAX ${ }^{\text {® }}$, ELAX ${ }^{\text {® }}$	Shutdown at $80^{\circ} \mathrm{C}$
and ROTAX ${ }^{\text {® }}$, sensor in coils	
PLC Input	8 Inputs, 24V
PLC Input BCD	4 Inputs, 24V, binary coded for program selection
PLC Output	8 Outputs, 24V, Source 100mA, Sink 400mA, Source/Sink
Options	
EtherCAT (CoE)	DS402, Beckhoff® ${ }^{\text {® }}$, OMRON ${ }^{\text {® }}$, TRIO ${ }^{\text {® }}$ MC
POWERLINK (CoP)	DS402, B\&R ${ }^{\text {® }}$
CANopen	DS402
EtherNet/IP	DS402, Allen-Bradley
PROFINET (PROFIdrive)	SIMATIC, SIMOTION, SINUMERIK
SMU Safety Functions	STO Safe Torque Off
	SS1 Safe Stop 1
	SS2 Safe Stop 2
	SLS Safely-Limited Speed
Start-up Key	ID number for Master Slave and application memory
Force Processes	Enabled by default
Controllable Motor-Types	LINAX ${ }^{\circledR}$, ELAX ${ }^{\circledR}$, ROTAX ${ }^{\circledR}$ and third party motors enabled by default

1.3 Dimensions

Dirt resistance		IP 20
Weight		Standard 840g, with bus module 880g
Case	Chrome steel	
Ground plate	Chrome steel	

1.4 Xvi 75V8 versus Xvi 75V8S

The XENAX ${ }^{\circledR}$ Xvi 75 V 8 S is the evolution of the current model $\mathrm{XENAX}{ }^{\circledR}$ Xvi 75 V 8 . The new model supports all the previous functionalities of the Xvi 75 V 8 , has the same dimensions and can therefore be replaced 1:1. For new developments we recommend to use the Xvi 78V8S. New products may no longer be supported with the Xvi 75V8. The Xvi 75V8S doesn't need JAVA and offers additional possibilities.

New possibilities Xvi 75V8S

	Xvi 75V8	Xvi 75V8S
Webserver base for WebMotion ${ }^{\text {® }}$	Java	HTML5
Option for measuring amplifier Signateq ${ }^{\circledR}$ with external force sensor, precise force measurement	-	Yes
Position accuracy absolute ROTAX ${ }^{\text {® }}$ Rxhq	Standard	High (with correction table)
ROTAX ${ }^{\circledR}$ Virtual Multiturn functionality	-	Yes
Optimized output stage for minimal space requirement (Heat emission), can be installed directly next to each other	-	Yes
Switching for connection of third-party motors	DIP-Switch	automatic
Position detection prepared for absolute encoder	-	Yes
USB-Interface	-	Yes
RS232-Interface	Yes	optional
Pulse/Direction	Yes	optional
Electronic gear	Yes	optional
Case	Aluminium	Chrome steel
Weight	515 g	840 g
Product-code	0x7508	0x7509

Note:

When replacing an Xvi 75 V 8 with the Xvi 75 V 8 S in an existing bus system, please note that the product-code is different. The corresponding development environment is required so that the new bus device can be integrated correctly. You will find instructions for this in the manual of the bus module used on our website.
www.jennyscience.ch/en/download
The application data is saved with the XENAX ${ }^{\circledR}$ Xvi 75 V 8 S in JSON format. An application file from the Xvi 75 V 8 is not compatible and cannot be transferred directly. We are happy to help with the transfer.

2 Controllable Motor Types

2.1 Linear Motor Axes and Electric Slides

FLAX ${ }^{\circledR}$ Electric Slides with Linear Motor

$E L A X{ }^{\circledR}$ is the evolutionary step of the widespread pneumatic slides. The great accomplishment is the patented compact integration of the linear motor in the slider case, resulting in a force/volume ratio which has hitherto never been achieved.

Special feature:
Linear motor identification and temperature monitoring over $\mathrm{I}^{2} \mathrm{C}$ bus.

ROTAX ${ }^{\circledR}$ Rotary motor axes

Whether you choose the ROTAX ${ }^{\circ}$ Rxvp with direct connection options to ELAX linear motor slides and LINAX ${ }^{\circ}$ linear motor axes or you go for the ROTAX ${ }^{\circ}$

Rxhq 50 with enormous torque despite its small dimensions and the 12 mm diameter hollow shaft the compact ROTAX ${ }^{6}$ rotary motor axes from Jenny Science all work precisely, can be used flexibly and
are robust in application. The XENAX ${ }^{\circledR}$ servo
controller identifies the ROTAX ${ }^{\circledR}$ rotary axis and configures the controller parameters automatically.

2.2 Servo Motors in our Product Line

Lafert, RAxx, RTxx

AC-Servo motors with encoder $A / A^{*}, B / B^{*}$ and Z / Z^{*}
and hall sensors e.g. AEG B28 D4 0,4Nm, $6000 \mathrm{U} / \mathrm{min}$. Optionally available with brakes for vertical applications.

Faulhaber ${ }^{\circledR}$, Maxon ${ }^{\circledR}$

AC / DC / EC brushless servo motors with incremental encoder RS422 A/A*, B/B* and Z/Z* and hall sensors, as well as DC brush-type servo motors with incremental encoder.

For brushless AC/EC servo motors there are hall signals and incremental encoder necessary.

2.3 Customary Servo Motors

maxon motor

3 Hardware and Installation

3.1 Environmental Conditions

Storage and transport	No outdoor storage. Warehouses have to be well ventilated and dry. Temperature from $-25^{\circ} \mathrm{C}$ up to $+55^{\circ} \mathrm{C}$
Temperature while operating	$5^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ environment, (above $40^{\circ} \mathrm{C}$, nominal current reduced to 6 A)
Humidity while operating	$10-90 \%$ non-condensing
Air conditioning	No external air conditioning needed; integrated heat sink.
MTBF	$>120^{\prime} 000 \mathrm{~h}$ for housing internal temperature of $<50^{\circ} \mathrm{C}$

3.2 Assembly and Installation

Assembly with two screws on an electrically conductive rear wall e.g. the back wall of a switch cabinet.

For a series mounting, the devices can be mounted directly next to each other. A distance of more than 1 mm between the devices, which is advantageous for
the removal and mounting of a device, is not necessary.
The distance to the base plate must be at least 40 mm .

We recommend mounting the devices in vertical orientation with the 7 -segment display at the top to ensure a good cooling air circulation.

Where space is limited:
Package with 5 XENAX ${ }^{\circledR}$ Servo controllers mounted on a base plate with a common connection for the power supply.

When operating with a power supply motor above
60VDC, the XENAX ${ }^{\circledR}$ Servo controller must be mounted in an electrical control cabinet and the XENAX ${ }^{\circledR}$ Servo controller must be connected to protective earth using the shielding clamp (Art. No. 130.09.00) for motor cable.

When operating with a power supply motor below or equal 60VDC, a SELV/PELV power supply has to be used or XENAX ${ }^{\circledR}$ Servo controller must be connected to protective earth using the shielding clamp (Art. No. 130.09.00) for motor cable.

4 Functional Safety - TüV certified

Consult also the TUTORIAL Video

Tutorial 3: Functional Safety (SMU) TÜV certified
on our website. In this video we demonstrate and explain the functions of the TÜV certified SMU (Safety Motion Unit) for functional safety.

4.1 Hardware Requirements

In order to use the TÜV certified safety functions a XENAX ${ }^{\circledR}$ Servo controller equipped with an optional Safety Motion Unit (SMU) is needed.

The SMU module has to be ordered by the client with a separate article number.

XENAX ${ }^{\circledR}$ Servo controllers can only be upgraded to SMU at Jenny Science. SMU modules will only be supplied when mounted into a XENAX® Servo controller.

Legal Note:

In case of any modification or attempts of modification on the hardware by third parties, the TÜV certification is no longer guaranteed and Jenny Science declines all liability.

Functional Safety
SIL 2, PL d, Cat. 3

4.2 Safety Standards

EN 61508-1:2010 EN 61508-2:2010 EN 61508-3:2010 Functional safety of electrical/	SIL 2 Safety Integrity Level 2
EN ISO 13849-1:2015 Safety of machinery, Safety-related parts of control systems	Cat 3 Category 3 PL d Performance Level d
EN 61800-5-2:2017 Adjustable speed electrical power drive systems	Safety Functions: STO Safe Torque Off SS1 Safe Stop 1 SS2 Safe Stop 2 SLS Safely-Limited Speed

4.3 Basic Conditions

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Motor Types } & \begin{array}{l}\text { Functional Safety with SMU can be used for all } \\
\text { LINAX®, ELAX® and ROTAX® motor families, as well as } \\
\text { rotary brushless motors with different A/B/Z encoder } \\
\text { signals. Rotary brush type DC motors are not subject } \\
\text { to the functional safety. }\end{array}
$$

Note1: For vertical mounted linear axis, weight

compensation must be used for safety functions SS2

and SLS. The safety function SBC (Safe Break Control)

is not available.

Note2: Rotative motors operating suspended loads

are excluded from SS2 and SLS safety functions.\end{array}\right\}\)| Commissioning |
| :--- |
| Period of use |
| Continuous operation |
| the client for each modification of the functional |
| safety and its parameters through commissioning. |

4.4 Technical Data Safety

Reaction time of the security inputs (until activation of a safety function)	< 4ms		
Probability of a dangerous failure per hour (PFH)	$\mathrm{PFH}=51.7 * 10^{-9} 1 / \mathrm{h}$		
Activation of a safety function	Switching on two channel to OV One-channel switched safety inputs lead to turn off of the power stage and requires a restart of the XENAX® servo controller.		
Level of safety inputs	$>21.0 \mathrm{~V}$ safety input inactive <2.0V safety input active Voltage levels outside of these limits are prohibited.		
Hierarchy of safety functions	Hierarchy	Safet	Functions
	4	STO	Safe Torque Off
	3	SS1	Safe Stop 1
	2	SS2	Safe Stop 2
	1	SLS	Safely Limited Speed
	Safety functions of higher hierarchy levels overdrive the ones below.		

Deceleration ramps for SS1 Profile Position Mode and Cyclic Synchronized Position Mode (RT-Ethernet)	Trough parameter ED (Emergency Deceleration)		
Deceleration ramps for SS2			
Profile Position Mode	With Parameter ED (Emergency Deceleration)		
Cyclic Synchronized Position Mode (RT-Ethernet	Indicated by superior master controller		
Deceleration ramps for SLS			
Profile Position Mode	After speed infringements through parameter ED (Emergency Deceleration) Cyclic Synchronized Position mode (RT-Ethernet)		Indicated by superior master controller
:---			

4.5 Safety Functions

The inputs for the safety functions are located at the PLC I/O (26-Pin D-Sub) connection of the XENAX ${ }^{\circledR}$ servo controller (INPUTS 1-8). The individual safety functions can be freely configured to the corresponding inputs. Details on the pin assignment can be found in chapter 6.2.8 PLC I/O.

4.5.1 STO, Safe Torque Off

According IEC 61800-5-2

Immediate shut-down of the output stage.
Error 90 is generated if the power stage was switched on at the time of STO.

4.5.2 SS1, Safe Stop 1

Stop followed by shut-down of the output stage
(Stop category 1)

Error 90 is generated if the power stage was switched on at the time of SS1.

Stop while remaining in stop position, axis remains under power, power stage active. Then observation of stop-position, status SOS (Safe Operating Stop). If exceeding the position limit, STO will be triggered. Shut-down of the output stage (stop category 2)

Timeout Stop	$\Delta \mathrm{t} 1$	Standard 300 ms
Position window	$\Delta \mathrm{s}$	Standard +-2500 Inc

4.5.4 SLS, Safely Limited Speed

4.6 Functional Safety Parameterization in WebMotion ${ }^{\circledR}$

The defined Safety Functions and parameters are shown in WebMotion ${ }^{\circledR}$ in the menu application/io. This safety information can only be read, not modified.

The parameters of the Safety Functions can be made visible by pressing „Safety Param".

Please refer to chapter 11 WebMotion ${ }^{\circledR}$ for further explanations on WebMotion ${ }^{\circledR}$ interface.

If the XENAX $^{\circledR}$ servo controller contains a Safety Motion Unit (SMU) but no parameters are assigned, the following message appears: "SMU not active, no parameter set". The button directs to the page where the parameters are set.

The safety parameters can be modified with WebMotion ${ }^{\circledR}$ and the functional safety login:

Enter IP address of the XENAX ${ }^{\circledR}$ servo controller and add „/SAFETY.html" in Web browser. E.g. http://192.168.2.190/SAFETY.html

4.6.2 Modification of Safety Parameters

Password: SafetyXvi75V8S
"OK"
Note: Please pay attention to capital and small letters.

Note: The Signal of an active safety function has to be operated by a higher level control system.

5 UL

For UL-conformity, the XENAX ${ }^{\circledR}$ servo controllers need to be used with the Brake Energy Converter from Jenny Science AG to guarantee voltage levels during dynamic braking within DVC A Levels.

Please refer Manual_Brake_Energy_Converter.pdf

5.1 UL-Ratings

Description	Data
Input (PW) Input (LG) Output (Motor)	$24-36 \mathrm{VDC}$ $\max 6.93 \mathrm{~A}$ 24 VDC $\max 1.3 \mathrm{~A}$ $0-25.5 \mathrm{~V}$ ac, 3phase, $5.7 \mathrm{~A}, 18 \mathrm{~A}$ peak
Power Supply	These products are intended for operation within circuits not connected directly to the supply mains (galvanically isolated from the supply).
	The XENAX ${ }^{\circledR}$ Servocontroller/s need to be used with the Brake Energy Converter to stay within the 36 DVC A Limits
	Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes. For Canada (ENG): Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Canadian Electrical Code, Part I. For Canada (F): Des protections intégrées, à relais statique, contre les court circuits, ne protègent pas contre les circuits de dérivation. Une protection contre les circuits de dérivation doit être fournie conformément au code canadien de l'électricité, Partie I.
Surrounding Air Temperature	$+45^{\circ} \mathrm{C}$
Temperature Wago Connectors	$-60^{\circ} \mathrm{C}$... $100^{\circ} \mathrm{C}$
Temperature Rating of field installed conductors	$-25^{\circ} \mathrm{C} \ldots .80^{\circ} \mathrm{C}$
Motor Overload Protection for motors other than the LINAX ${ }^{\circledR}$ / ELAX ${ }^{\circledR}$ / ROTAX ${ }^{\circledR}$ Motors	External or Remote Motor Overload Protection and overtemperature sensing need to be provided.
Motor Overload Protection for the LINAX ${ }^{\circledR}$ / ELAX ${ }^{\circledR}$ / ROTAX ${ }^{\circledR}$ Motors	The proper connection and the rating of the load imposed by the equipment on the protector contacts. Power output: 0-25.5 VAC, 3 phase, 5.7 A, 18 A peak
UL File Nr.	E477533, Link to file, Link to file Canada

6 Electrical Connections

Note:

To disconnect or connect the electrical components at the electrical connectors, the power supply must be disconnected

XENAX ${ }^{\circledR}$ Xvi 75V8S

6.1 Plug Arrangement

Plug Type

RS232
Real time Ethernet (optional)
CANopen (optional)
Ethernet TCP/IP
MOTOR
POWER / LOGIK
ENCODER HALL
OPTIO
PLC I/O
START-UP / MASTER-SLAVE
USB-B socket
$2 \times$ RJ45 socket with status LED
9 Pol socket D-Sub
RJ45 socket with status LED
3 pole plug Wago, pitch $3,5 \mathrm{~mm}$
4 pole plug Wago, pitch $3,5 \mathrm{~mm}$
15 pole plug D-Sub High Density
8 pole socket RJ45
26 pole plug D-Sub High Density
2×4 pole plug USB-A

6.2 Plug Pin Configuration

6.2.1 USB/COM

USB-B Socket
A standard USB connection is implemented here by default. Optionally, a serial RS232 communication can be realised via the USB-B socket. On request, the controller can be ordered with the corresponding assembly variant.

USB Socket	XENAX $^{\circledR}$	PC/SPS
1	N.C.	
2	RX	TX
3	TX	RX
4	GND -	GND

The typical POWER supply is 24V DC. For the stronger LINAX ${ }^{\oplus}$ F40 / F60 axes with high masses ($>2 \mathrm{~kg}$) or high dynamics ($>1.5 \mathrm{~m} / \mathrm{s}$) a POWER supply of 48 V or 72 V DC is applicable. The current consumption per axis can be up to 8A and 20A peak per axis. Depending on mass in motion, profile and power supply voltage.

For a fuse protection of the power supply, it must be considered that a short peak current of 8 A can be reached for the rotating field adjustment.

For a detailed calculation of the required power supply in your application, please contact our support www.jennyscience.ch/en/Service.

6.2.2 Motor Plug 3 Phase

Wago 3 Pole Plug	LINAX ${ }^{\circledR}$ / ELAX ® 3 Phase	Servo motor 3 Phase	DC Motor
1	U (white)	U	$\mathrm{DC}+$
2	V (brown)	V	$\mathrm{DC}-$
3	W (green)	W	

6.2.3 Logic and Power Supply

4 4 Pole Female Wago 734-104 for cross-section up to $1.5 \mathrm{~mm}^{2}$		
1	0, GND	
2	$24 V$ DC	
3	0, GND	
4	$12-75 \mathrm{~V}$ DC	Adapter logic power

Important:

- The $\mathbf{0}$ volt connection of the logic supply (pin 1) and the 0 volt connection of the power supply (pin 3) have to be connected to the ground/chassis star point of the switch cabinet.
- The base plate of the Lxs/Lxu motors must be connected to the GND/chassis star point of the switch cabinet.
- The XENAX ${ }^{\circledR}$ servo controller must be screwed onto a conductive background, which is connected to the GND/chassis star point of the switch cabinet. The motor cable must be connected to the shield clamp.

Note:

If the Lxs/Lxu is mounted on a non-conductive base plate (e.g. granite), the protective earth must be connected directly to the motor.

In case of emission sensitivity, it is recommended to twist the supply cable for logic and power.
6.2.4 Encoder and Hall Signals

15 pole D-Sub socket	Signal	Description
1	GND	Together, for encoder and hall OV supply, only 1 pin
2	5V Encoder	150 mA for encoder supply
3	Encoder A	Pull up 2,7kS to 5V, differential input 26LS32
4	Encoder A*	Middle level: pull up $2,7 \mathrm{k} \Omega$ to 5 V , Pull down $2,2 \mathrm{k} \Omega$, differential input 26LS32, 330 Ω internal between Pin3/4
5	Encoder B	Pull up $2,7 \mathrm{k} \Omega$ to 5 V , differential input 26LS32
6	Encoder B*	Middle level: pull up $2,7 \mathrm{k} \Omega$ to 5 V , pull down $2,2 \mathrm{k} \Omega$, differential input 26LS32, 330Ω internal between Pin5/6
7	Encoder Z	Pull up $2,7 \mathrm{k} \Omega$ to 5 V , differential input 26LS32
8	Encoder Z*	Middle level: pull up $2,7 \mathrm{k} \Omega$ to 5 V , pull down $2,2 \mathrm{k} \Omega$, differential input 26LS32, $330 \Omega \mathrm{E}$ internal between Pin7/8
9	HALL 1	Pull up $2,7 \mathrm{k} \Omega$ to 5 V , differential input 26LS32
10	HALL 1*	Middle level: Pull up $2,7 \mathrm{k} \Omega$ to 5 V , pull down $2,2 \mathrm{k} \Omega$, differential input 26LS32
11	HALL 2 / -TMP	Pull up $2,7 \mathrm{k} \Omega$ to 5 V , differential input 26 LS 32 / over temperature signal motor
12	HALL 2*	Middle level: Pull up 2,7k Ω to 5 V , Pull down 2,2k Ω, differential input 26LS32
13	HALL 3/I2C_SCL	Pull up 2,7k auf 5V, differential input 26LS32 / I2C clock
14	HALL 3*	Middle level: Pull up $2,7 \mathrm{k} \Omega$ to 5 V , pull down $2,2 \mathrm{k} \Omega$, differential input 26LS32
15	5V Hall / I2C_SDA	5V, $150 \mathrm{~mA} / \mathrm{I} 2 \mathrm{C}$ data signal

6.2.5 Y-Cable for Encoder access

By using a pre-assembled Y-cable to access the differentially routed A, B and Z signals, cameras, for example, can be triggered precisely. The cable is available from Jenny Science AG. The signal is to be analysed in quadrature.

9 pole D-Sub socket	Signal	Description
1	GND	Together, for encoder and hall OV supply, only 1 pin
2	NC	Not connected
3	A	Output Encoder A
4	A *	Output Encoder A*
5	B	Output Encoder B
6	B *	Output Encoder B*
7	Z	Output Encoder Z
8	Z *	Output Encoder Z*
9	NC	Not connected

6.2.6 Definition of Rotating Direction for Servo Motors

	Sight on front surface motor shaft, turn the shaft clockwise, the meter has to count upwards
Switch encoder A/B Switch +/- motor power	Switch rotating direction for DC brush type servo motors
Switch encoder A/B Switch hall1 with hall3 Switch winding-phase 1 and phase 2	Switch rotating direction for 3phase brushless servo motors
Phase 1 to phase 2, 2 to 3 and 3 to 1 Hall 1 to hall2, 2 to 3 and 3 to 1	Switch phase connection for brushless servo motors without change of rotating direction

A CAN interface for communication with the Signateq ${ }^{\circledR}$ measuring amplifier is implemented as standard. It is possible to have a Pulse/Dir or a second encoder channel instead.
Signal
GND intern
$5 V$ intern
CAN High Line
CAN Low Line

Enter settings in menu setup / basic settings: PULSE / DIRECTION CONTROL, MODE 2, Parameter MODE and INC PER PULSE
Signal

GND internal
5V internal
Pull up $2,7 \mathrm{k} \Omega$ to 5V, differential input $26 \mathrm{LS32}$
Pull up $2,7 \mathrm{k} \Omega$ to 5 V , differential input 26LS32
Middle level: Pull up 2,7k to 5V, pull down 2.2k , differential input 26LS32
Middle level: Pull up 2,7k Ω to 5 V , pull down $2.2 \mathrm{k} \Omega$, differential input 26LS32

Second Encoder channel (optional)

MODE	0-29	1
WIC PER PULSE	1-50	0
SYNC RATO	+-3x. 10	-5
CARD IDENTIFIER	0-255	0
RJ45	OPTIO	
Pin 1	GND	
Pin 2	5V	
Pin 3	A	
Pin 4	B	
Pin 5	B*	
Pin 6	A*	

6.3 Internal I/O Circuit

INPUT 1-12

HIGH or LOW ACTIVITY programmable

OUTPUT 1-8

TYPE SOURCE

TYPE SINK

TYPE SOURCE/SINK

6.4 Output Configuration

TYPE
SOT (Set Output Type) parameter 16 Bit 2 Bit-value per output

Parameter Values

Output 1	$\begin{gathered} \text { SOT } \\ \text { Bit } \\ 0,1 \end{gathered}$	SOT Bit-value 0,0	TYPE SINK	$\begin{gathered} \text { SOA } \\ \text { Bit } \\ 0 \end{gathered}$	SOA Bit-value 0	ACTIVITY HIGH	Output ON OV	Output OFF open
				0	1	LOW	open	OV
2	2,3	0,1	SOURCE	1	0	LOW	open	24 V
				1	1	HIGH	24V*	open*
3	4,5	1,0	SINK/SOURCE	2	0	LOW	OV	24V
				2	1	HIGH	24 V	OV

Examples

| Output | SOT | SOT | TYPE | SOA | SOA | ACTIVITY | Output | Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit | | | | | | | | |

7 Configuration Motor Type Jenny Science /
 Motor customer specific

The XENAX ${ }^{\circledR}$ Servo Controller differentiates between Jenny Science Motors LINAX ${ }^{\circledR}$ Lx, ELAX ${ }^{\circledR}$ Ex or ROTAX ${ }^{\circledR}$ $R x$, and motors from other manufacturers.
The XENAX® Servocontroller recognises if the connected motor is a Jenny Science motor (LINAX ${ }^{\circledR}$ Lx, ELAX ${ }^{\circledR}$ Ex or ROTAX ${ }^{\circledR}$ Rx) or a motor from another manufacturer (typically a rotative servo motor) and configures the required settings. If this automatic detection is not desired, the settings can be fixed to either Jenny Science Motor (command: MM1) or third party motor (command: MM2). AutoDetection (MMO) is switched on by default.

8 USB/COM Socket

8.1 USB Operation

A serial communication can be established over the USB/COM socket. By default, the serial communication is implemented with USB. This means that a computer can be directly connected with a XENAX ${ }^{\circledR}$ over a USB cable. The XENAX ${ }^{\circledR}$ will register itself as "serial USB device" on the computer. A serial communication can be established with the following
settings:

Baudrate	$115 ' 200$ Baud
Data	8 Bit
Parity	kein
Stop	1 Bit

8.2 RS232 Operation

Optionally, the USB/COM socket can be used as a plain RS232 interface. Note that the XENAX ${ }^{\circledR}$ must be ordered with this option because hardware changes are required. With this option, the baud rate can be configured with a DIP switch.

Baud rate configuration for RS232 with 4-Bit DIP switch. The XENAX ${ }^{\circledR}$ must be opened to reach the DIP switch. The new settings is applied after a reboot.

Baudrate

RS232 9600 Baud
RS232 115'200 Baud (Default)
RS $23257^{\prime} 600$ Baud
RS232 19'200 Baud
Data
Parity
Stop
kein

9 ETHERNET TCP/IP Interface

The TCP/IP interface has two essential functions. Firstly, HTML5-WebMotion can be accessed over the Ethernet TCP/IP interface. Secondly, the Ethernet TCP/IP interface is used to control the axis with all available ASCII commands. The port 10001 I used for

ASCII commands.
IP-address of XENAX ${ }^{\circledR}$ is provided on the back side of the controller. If this has been changed or the label is not accessible, you can have the IP-address displayed on the 7-segmet display. To do this, switch on the logic supply and switch it off again while the dot in the 7 -segment display lights up. The next time you switch it on, the IP-address is shown on the 7segment display.

Connection of XENAX ${ }^{\circledR}$ to laptop/PC over a normal RJ45 network cable.

When connecting laptop/PC directly without a switch to XENAX ${ }^{\circledR}$, it may need a crossed RJ45 cable. However, with newer network types a crossed RJ45 cable is not necessary anymore.

Ethernet connector

The green "Link Status" LED lights up as soon as the cable is connected and the initialization of the connection is complete. Die orange «Activity» LED blinkt bei

Kommunikation.

IPCONFIG command in DOS window

Test TCP／IP address range． IP address has to be in range of 192．168．2．xxx If necessary adjust IP address in computer „network environment＂to e．g．IP 192．168．2．200．
xxx＝001－255
\＃IP Address XENAX ${ }^{\circledR}$

PING command in DOS window
IP address is provided on the back side of XENAX ${ }^{\circledR}$ ． If no response，check direct connection with crossed RJ45 cable．

If the port 10001 is not closed correctly it can stay open．In this case，it is no longer possible to connect to this port with a new TCP／IP connection

There are 3 options for closing the port again．

Disconnect the Ethernet cable directly on the Xenax and the port will be closed automatically．

Open a second TCP／IP connection over the port 9999 and send a «ENPR» command．This will close the port 10001. Note：Port 9999 can only be used for the＂ENPR＂ command．

Set a timeout with the command „WD＂and specify the watch dog time in milliseconds．A ＜CR＞must now be sent over port 10001 with the defined interval or the port will be closed automatically．

9．1 Test IP Connection with＞IPCONFIG

\qquad

9．2 Test Connection with＞PING

C：\Dokunente und Einstellungen \backslash ping 192．168．2．100	
Ping wird ausgefuhrt für 192．168．2．100 mit 32 Bytes Daten：	
Intwort von 192．168．2．10日：Bytes＝32 Zeit＜1ns TTL＝64	
Intwort von 192．168．2．109：Bytes＝32 Zeit＜1ns ITL＝64	
Intwort von 192．168．2．18日：Bytoc－32 Zoit＜1no T1L－61	
Antwort von 192．168．2．100：Bytes＝32 Zeit＜1ns T1L＝64	
Ping－Statistik für 192．168．2．100： Pakete：Gesendet \quad 4，Enpfangen＝4，Verloren $=0$ 人 0% Verlus Ca．Zeitangaben in Millisek．： Mininum $=$ Bns，Maxinum $=$ Bns，Mittelwert $=$ Gns	

9．3 Close Port 10001

10 ASCII Protocol

Over Ethernet TCP/IP in the menu move axis / by command line in WebMotion ${ }^{\circledR}$ or via the serial interface e.g. with hyper terminal.

The simple ASCII protocol works with the echo principle. The sent characters come back as an echo and can be checked immediately. Thus, if existing, you get a parameter value and finally the character prompt ">". If the command could not
accepted then, it has a "?" character in the string.

Description Command [Parameter]

Write parameters:

Power continues	PWC	<CR>
Speed	SP $10-9^{\prime} 0000^{\prime} 000$ <CR>	
Acceleration	AC $2^{\prime} 000-100^{\prime} 000^{\prime} 000$ <CR>	

Terminate a command with <CR> only, no additional <LF>

Read parameters:

Tell Position	TP	$<C R>$
Retrieve	e.g. AC?	$<C R>$
	SP?	<CR>

Note for sequential commands: Terminate a command with <CR> only, no additional <LF>. Do not send a new command until you have received the prompt character „," before.

Echo command accepted

PWC <CR><LF>>
SPxxxxxx<CR><LF>>
ACxxxxxx<CR><LF>>

TP <CR> <LF> XXXXXXX<CR> <LF\gg
AC? <CR> <LF> XXX <CR> <LF\gg
SP? <CR> <LF> XXX <CR> <LF\gg

Echo command not recognized or cannot be completed in the current configuration
<command> <CR> <LF> ? <CR> <LF\gg

Echo command cannot be accepted at this time <command> <CR> <LF> \#xx <CR> <LF\gg
\#-List

Nr.	Description
$\# 01$	Error in queue
$\# 03$	Drive is active
$\# 05$	Program is active
$\# 13$	EE1 in queue
$\# 14$	EE in queue
$\# 15$	Force Calibration active
$\# 27$	I Force Drift Compensation active
$\# 34$	Rotary reference active
$\# 36$	Gantry reference active
$\# 38$	Reference active
$\# 40$	Command at active bus module not allowed
$\# 47$	Fault reaction active (f.e. stop ramp)
$\# 49$	No JSC Motor detected
$\# 65$	Value of parameter not valid
$\# 66$	Command not completed correctly (>5s between ASCII-signs)

10.1 ASCII Protocol TCP/IP

In TCP/IP the cohesive ASCII sequences can be splitted into different telegram packages. This is why a separate receive buffer has to be considered.

Socket receive	Buffer	ASCII Answer
TP4500 CR LF > TM	TM	TP4500
C2300 CR LF >		TMC2300

10.2 Asynchronous Messages (Events)

To reduce response time, status or PLC input modifications of the PLC interface can be sent automatically (events). Therefore it is not necessary to poll the status or inputs permanently.

Enable Events
Events disabled, default EVTO
Events enabled generally EVT1

Status modifications / Reference Event
Will be sent in case of generally activated events.

Power OFF	@S0
Power ON / Halt	@S1
In motion	@S2
Error	@S9
Reference finished	@H

PLC Input

In addition to the status modifications, changes of the PLC inputs can also trigger events. Prerequisite for this is that Events is activated (EVT1) and ETI (Event Track Input) is selected.

Inputs are selectable with ETI (Event Track Input)

Enable event of input $1 . .12 \quad$ ETI1..C Enable all input events ETIO

Disable event of PLC input with DTI (Disable Track Input).

Disable event for input $1 . .12$ Disable all input events

DTI1..C DTIO

Structure of input events @lxyz with xyz as half bytes in Hexadecimal notation and shows the physical state of the inputs.

PLC I/O pin no.		16	15	14	13	24	23	22	21	20	19	18	17
INPUT no.		12	11	10	9	8	7	6	5	4	3	2	1
Example input bits after modification		1	0	1	1	0	0	1	0	1	1	0	1
Event general	@1	x				y				z			
Example Event	@।	"B"				"2"				"D"			

Default Settings after Power ON

After power on of XENAX ${ }^{\circledR}$ servo controller or application download, default settings are active again:

Events OFF
PLC Input Events OFF

11 WebMotion ${ }^{\circledR}$

WebMotion ${ }^{\circledR}$ is an integrated graphic user interface (website), located in XENAX ${ }^{\circledR}$.
It is loaded and activated over a web browser (Internet Explorer >= 8.0, Chrome, Firefox, Opera, ...).

Note:

Please make sure that zoom-settings of the browser window are at 100% (original size). Otherwise the WebMotion ${ }^{\circledR}$ display is affected.

Consult also the TUTORIAL Video Tutorial 1: Startup with web browser

On our website. Within 5 minutes you are able to start any of our linear motor or rotativ axis and control them simply by using your Webbrowser.

11.1 Start WebMotion ${ }^{\ominus}$

Start your web browser with the IP address number of your XENAX ${ }^{\circledR}$ and add "/xenax.html" as a suffix.

IP address is provided on the back side of the XENAX ${ }^{\circledR}$.

Example:
http://192.168.2.xxx/xenax.htm|

XENAX ${ }^{\circledR}$ is being started with an automatic system selfcheck including type designation and version information on firmware and hardware. Moreover, WebMotion ${ }^{\circledR}$ identifies the connected linear motor or rotary motor and uploads the current XENAX ${ }^{\circledR}$ settings (parameters, programs) in to the WebMotion ${ }^{\circledR}$.

Interruption of TCP/IP Connection

If the XENAX ${ }^{\circledR}$ logic supply is interrupted or if the Ethernet cable is disconnected, the TCP/IP interruption will be detected by WebMotion ${ }^{\circledR}$ and signaled with "offline". After removing the cause of the offline-mode, the TCP/IP connection has to be reloaded by updating the current web browser window.

If it is still blocked, it is recommended to first exit and then restarts the web browser.

The settings in Kaspersky Internet Security might be responsible if the error code „Error Upload XENAX Settings" occurs with the automatic self-check of WebMotion ${ }^{\circledR}$.
If you are using Kaspersky or similar internet security software, the security for Instant Messenger Services has to be deactivated.
(Refer example in Kaspersky Pure 3.0)

11.1.1 Error „Upload XENAX ${ }^{\circledR}$ Settings"

11.2 Quick Start (only with LINAX ${ }^{\circledR}$ and ELAX ${ }^{\circledR}$ linear motor axes)

The Quick Start function allows the user to setup the LINA ${ }^{\circledR}$ or ELAX ${ }^{\circledR}$ linear motor axis with the XENAX ${ }^{\circledR}$ controller simply immediately after receipt of the components.
It is completed per mouse click, without parameter settings and without an instruction manual.
By pressing the Quick Start button, a system check is automatically started including the following tests: Cable connections, power voltage, input functions, functionality of the measuring system, parameter settings and current flow of the linear motor.

In order to test the functionality of the measuring systems the system asks you to move the slider of the LINAX ${ }^{\circledR}$ linear motor axis of a distance of at least 20 mm back and forth.

With the START the LINAX ${ }^{\circledR}$ or ELAX ${ }^{\circledR}$ linear motor will be referenced automatically and will then move the distance back and forth that was indicated manually by hand before.

For the Quick Start Function it is recommended to operate the linear motor axis in horizontal orientation without a payload.

The dynamics can dynamics be adjusted with the slider "DYNAMIC".

11.3 Operation, Status Line

The status line on the lower edge of WebMotion ${ }^{\circledR}$ gives an overview of the current condition of XENAX ${ }^{\circledR}$
and the connected motor at any time. These data cannot be changed and are for the user's information only.

FORCE[N]
Shows the current measured Force in [N] when a Signateq ${ }^{\circledR}$ is connected.

POSITION
After referencing, this indicates the absolute position of the motor in increments of the measuring system.

Standard for LINAX ${ }^{\circledR}$ / ELAX ${ }^{\circledR}$ linear motors is
1 Increment $=1 \mu \mathrm{~m}$.
MOTOR
Automatic identification of the connected LINAX ${ }^{\circledR}$ / ELAX ${ }^{\circledR}$ / ROTAX ${ }^{\circledR}$ motor axis. If a third-party rotary motor is connected, "ROTATIVE" is displayed.

TEMP
Shows the current temperature of the coils in the LINAX ${ }^{\circledR}$ / ELAX ${ }^{\circledR}$ / ROTAX ${ }^{\circledR}$ motors, which is detected by a sensor. This measuring function is not possible for rotary servo motors. The temperature observation
for servo motors is done by an $I^{2} \mathrm{~T}$ calculation. For LINAX ${ }^{\circledR}$ / ELAX ${ }^{\circledR}$ / ROTAX ${ }^{\circledR}$ motors the I^{2} T observation is performed in addition to the motor temperature measurement.

REFERENCE

The reference is a condition to start the LINAX ${ }^{\circledR} / E L A X^{\circledR}$ linear motor axes. This is also how the precise current commutation is being calculated.

PENDING = Reference outstanding DONE = Reference completed

STATUS

POWER OFF = off
POWER ON / HALT = On, Motor is not moving IN MOTION = Motor is in motion ERROR XX = error number, with a button that details the error and shows error history.

INPUT

Physical state of the input 1-8 directly and the input 9-12 binary coded.

OUTPUT
Physical state of output 1-8
(Modification under menu application / I/O)

PROG
Program number, binary coded from inputs 9-12. For this binary coded program selection, the MODE has to be set on higher or equal 10, while input 8 is the trigger for program start.

MODE
Displays the operating mode: $0=$ Standard Servo 1 = El. Gera mechanism over second encoder 2 = Pulse/Dir, stepper emulation 10 = Coded Prog No Standard $12=$ Coded Prog no for Stepper Controlled

Simple online control for setup and test of the linear motor axes.

The orange values behind the empty fields show the current registered values in XENAX ${ }^{\circledR}$. New values can be entered in the empty fields and registered with <Enter>. These parameters will overwrite the existing values and will be registered directly in the XENAX ${ }^{\circledR}$ servo controller.

SOFT LIMIT POS
Software Limit Position, setting of an individual motion range in increments.
SLP- = position counter lower values
SLP+ = position counter upper values Both values $0=$ No limit (limit is the stroke of the connected linear motor)

S-CURVE \%

Percentage S-curve rounding of the internal motion profile, e.g. in an INDEX, generally for all motion profiles. Automatic calculation of jerk (changing of acceleration per time unit inc/ s^{3})

ACC *1‘000
Acceleration in inc $/ \mathrm{s}^{2}$ multiplied with a factor of $1^{1} 000$

SPEED
Speed in Inc/s

SP OVERRIDE \%
Override of the set speed and acceleration of a motion profile, for example for process deceleration or set up mode.

11.4 Move Axis by Click

11.4.1 Move Axis by Click for LINAX ${ }^{\circledR}$ /ELAX ${ }^{\circledR}$ Linear Motors

Go Way (REL)
Input of the distance relative to the present position in increments. Sta rt with <Enter>.

Go Position (ABS)
Input of the position absolute to the zero point in increments. Start with <Enter>.

Rep Reverse
Endless automatic motion back and forth. Input of the way relative to the present position in increments. Start with <Enter>.
While running, the motors parameters such as acceleration, speed, and wait time can be adjusted online.

Stop the back and forth movement with "Stop Motion".

Wait Reverse

Wait time at reversal point of rep reverse in units of 1 milliseconds. Start with <Enter>.

TIME (ms)
Time of the last profile drive in milliseconds.
Reference
Reference-drive (>REF)
Executes the reference-drive to calculate the absolute position.
Run this function once after switching on the power.

Go Pos 0
(>GO) Go to position 0.

Power Cont

Power continues (>PWC)
Turning on the power stage with taking over the most recent absolute position and without the need of referencing the linear motor, e.g. after error 50 or after
"Power Quit". This is only possible as long as the logic supply has not been interrupted after the linear motor was
referenced.

Stop Motion

Stops the motion under control of deceleration ramp.

Power Quit

Power stage without power, the linear motor is movable by hand. Acknowledge error.

The XENAX ${ }^{\circledR}$ Servo Controller automatically recognizes the ROTAX ${ }^{\circledR}$ rotay motor.

If the XENAX ${ }^{\circledR}$ servo controller does not recognize a LINAX ${ }^{\circledR}$ or ELAX ${ }^{\circledR}$ linear motor axis or a ROTAX ${ }^{\circledR}$ rotary axis, XENAX ${ }^{\circledR}$ assumes a connection with third party motor. Instead of "Go Pos 0" WebMotion ${ }^{\circledR}$ offers Jog + und Jog - functions.

Jog -
Runs the motor in negative direction until the command "Stop Motion" stops the motor.

Jog +
Runs the motor in positive direction until the command "Stop Motion" stops the motor.

While the motor is running with Jog, the dynamics SP OVERRIDE or SPEED can be adjusted online.
11.4.2 Move Axis by Click for ROTAX ${ }^{\circledR}$ Rotary Motor or Third Party Motors

11.5 Move Axis by Command Line

The XENAX ${ }^{\circledR}$ can directly be controlled by a ASCII command set.

COMMAND
Transmits an ASCII command with <Enter>. Under "Recall commands" the activated commands are saved and can be reactivated by mouse click

RESPONSE
shows received characters by WebMotion ${ }^{\circledR}$.

COMMAND SET
Lists all ASCII commands, recognized by XENAX ${ }^{\circledR}$.

Using the simple ASCII command [+PARAMETER] set, all XENAX ${ }^{\circledR}$ Servo controller functions can be activated with an extremely short reaction time.

Information about the tables:
${ }^{1}$) Diagnosis and test functions
? Query of the programmed value

DESCRIPTION

Power ON incl. reset encoder counter Power ON continue, keep encoder counter

Power OFF servo amplifier
Reset setup parameters to default values
Reset motor parameters to default values for the currently connected motor (other parameters remain unchanged)
Clear actual position counter, (not possible with LINAX® ${ }^{\circledR} E L A X{ }^{\circledR}$, with ROTAX $^{\circledR}$ only possible if it is not referenced)

Deactivate blocking by unconfigured SMU
(until next power-cycle)

11.6 ASCII Command Set for XENAX ${ }^{\circledR}$

11.6.1 Power / Reset

Short CMD PARAMETER

Power	PW
Power continue	PWC
Power quit	PQ
Reset	RES
Reset Motor	RESM
Clear position to 0	CLPO

Disable Motion blocked by DMBUS
unconfigured SMU

11.6.2 Basic Settings

DESCRIPTION	Short	CMD	PARAMETER
Set up of MODE (Operating)	Mode	MD	0, 1, 2, 10, 12 / ?
Important! In case of changing this value, the servo amplifier must be in state POWER OFF (>PQ)..			
Inc. per pulse, pulse/direction control	Inc per Pulse	ICP	0-50
Synchronous ratio for electronic gear	Synchronous Ratio	SR	\pm 1-1'000:10
Set CI (query), CANopen Node ID, Powerlink Node ID, Remote ID in Master/Slave Configuration	Card Identifier	Cl	0-255 / ?
Card Identifier of Gantry Slave	Gantry Slave Identifier	GSID	1-3
Identification string max 32 characters free for user	Servo controller ident.	SID	string / ?
Automatic detection of motor manufacturer (Jenny Science or Third Party Motor) or set motor manufacturer MMO = AutoDetection (Default setting)	Motor Manufacturer	MM	0-2/?
MM1 = Jenny Science Motor MM2 $=$ Third Party Motor			

11.6.3 Motor Settings

DESCRIPTION	Short	CMD	PARAMETER
Max. motor current nominal [x10mA]	I stop	IS	10-2'000 / ?
Max. motor current peak [x10mA]	I run	IR	10-2'000 / ?
Pole-pair number of motor	Pole pair	POL	0-100 / ?
Number of encoder increments per revolution	Encoder	ENC	10-10'000'000 / ?
Direction of phase control (u, v, w or v, u, w)	Phase Direction	PHD	0,1/ ?
Detection of phase control sequence. By rotating the motor clockwise, 0 or 1 appears. Parameter can	Phase Direction Detection	PHDD	?
be used to enter the phase control (PHD). If "?" appears, the Dip-switch is set to linear in the XENAX ${ }^{\circledR}$ servo controller or the hall wiring is wrong.			
Correction of the electrical angle at new adjustment of coils to magnets.	Phase Offset	PHO	0-359 / ?
Force constant of the motor for LINAX ${ }^{\circledR} / E L A X{ }^{\circledR}$ in $[m N / A]$, torque constant for rotary motors in [$\mu \mathrm{Nm} / \mathrm{A}$]	Force Constant Motor	FCM	0-100‘000‘000 / ?
Resistance phase to phase of the motor in [m ${ }^{\text {] }}$	Phase to Phase Resistance	RPH	0-100،000 / ?
Inductance phase to phase of the motor in [$\mu \mathrm{H}$]	Phase to Phase Inductance	LPH	0-100‘000 / ?
Gear ration of rotary Jenny Science motors (ROTAX)	Gear Ratio	GR	?

11.6.4 Controller Settings

Payload "PAYLOAD" [g] or
moment of inertia „INERTIA" [x10-9 $\left.\mathrm{kgm}^{2}\right]$
Bandwidth position controller "GAIN POS"
Bandwidth current controller "GAIN CUR"

Mass Load	ML	$0-100^{\prime} 000^{\prime} 000 / ?$
Bandwidth Position	BWP	$1-5^{\prime} 000 / ?$
Bandwidth Current	BWC	$5-5^{\prime} 000 / ?$

11.6.5 Motion Settings

Position rated absolute, Inc	Position	PO	$\pm 2^{\prime} 000 ' 000 ' 000 /$?
Position soll (absolute) increment, initial value after powerup	Position Initial Value	POI	$\pm 2^{\prime} 000 ' 000 ' 000$ / ?
Way relative, encoder increment	Way	WA	$\pm 2^{\prime} 000 ' 000 ' 000 /$?
Way (relative) encoder Inkrement, initial value after powerup	Way Initial Value	WAI	$\pm 2^{\prime} 000 ' 000 ' 000$ / ?
Speed Inc/s (encoder counter)	Speed	SP	10-9'000'000 / ?
Speed $\mathrm{Inc} / \mathrm{s}$ (encoder counter), initial value after powerup	Speed Initial Value	SPI	10-9'000'000 / ?
Acceleration Inc/s ${ }^{2}$ (encoder counter)	Acceleration	AC	2'000-1'000'000'000 / ?
Acceleration Inc/s ${ }^{2}$ (encoder counter), initial value after powerup	Acceleration Initial Value	ACI	2'000-1'000'000'000 / ?
Emergency Deceleration Inc/ s ${ }^{2}$	Emergency	ED	10’000-1'000'000'000 / ?
(e.g. for input function $E E / E E$, for errors, if driving in limit switch or soft limit etc.)	Deceleration		
If necessary, the emergency deceleration can be adjusted during operation if there is an emergency deceleration of $>1 \mathrm{~s}$			
\rightarrow In case of emergency the deceleration is always <1 s			
Override, scaling from the Acceleration and Speed	Override	OVRD	1-100 / ?
Override, scaling from the Acceleration and Speed, initial value after powerup	Override Initial Value	OVRDI	1-100 / ?
Percentage S-Curve rounding. Calculation of jerk parameter automatically.	S-Curve	SCRV	1-100 / ?
Percentage S-Curve rounding. Calculation of jerk parameter automatically, initial value after powerup.	S-Curve Initial Value	SCRVI	1-100 / ?
Jerk of trajectory [x10001nc/s ${ }^{3}$] of the completed drive	Acceleration Variation (Jerk), Read only	ACV	?
Movement range limitation within soft limit negative	Soft Limit Position Negative	SLPN (Old: LL)	Linear: 0 - <stroke> / ? Rotativ: $2^{-31}-2^{31} /$?
Movement range limitation within soft limit positive	Soft Limit Position Positive	SLPP (old: LR)	Linear: 0 - <stroke> / ? Rotativ: $2^{-31}-2^{31} /$?

Position rated absolute, Inc	Position	PO	$\pm 2^{\prime} 000 ' 000 ' 000 /$?
Position soll (absolute) increment, initial value after powerup	Position Initial Value	POI	$\pm 2^{\prime} 000 ' 000 ' 000$ / ?
Way relative, encoder increment	Way	WA	$\pm 2^{\prime} 000 ' 000 ' 000 /$?
Way (relative) encoder Inkrement, initial value after powerup	Way Initial Value	WAI	$\pm 2^{\prime} 000 ' 000 ' 000$ / ?
Speed Inc/s (encoder counter)	Speed	SP	10-9'000'000 / ?
Speed $\mathrm{Inc} / \mathrm{s}$ (encoder counter), initial value after powerup	Speed Initial Value	SPI	10-9'000'000 / ?
Acceleration Inc/s ${ }^{2}$ (encoder counter)	Acceleration	AC	2'000-1'000'000'000 / ?
Acceleration Inc/s ${ }^{2}$ (encoder counter), initial value after powerup	Acceleration Initial Value	ACI	2'000-1'000'000'000 / ?
Emergency Deceleration Inc/ s ${ }^{2}$	Emergency	ED	10’000-1'000'000'000 / ?
(e.g. for input function $E E / E E$, for errors, if driving in limit switch or soft limit etc.)	Deceleration		
If necessary, the emergency deceleration can be adjusted during operation if there is an emergency deceleration of $>1 \mathrm{~s}$			
\rightarrow In case of emergency the deceleration is always <1 s			
Override, scaling from the Acceleration and Speed	Override	OVRD	1-100 / ?
Override, scaling from the Acceleration and Speed, initial value after powerup	Override Initial Value	OVRDI	1-100 / ?
Percentage S-Curve rounding. Calculation of jerk parameter automatically.	S-Curve	SCRV	1-100 / ?
Percentage S-Curve rounding. Calculation of jerk parameter automatically, initial value after powerup.	S-Curve Initial Value	SCRVI	1-100 / ?
Jerk of trajectory [x10001nc/s ${ }^{3}$] of the completed drive	Acceleration Variation (Jerk), Read only	ACV	?
Movement range limitation within soft limit negative	Soft Limit Position Negative	SLPN (Old: LL)	Linear: 0 - <stroke> / ? Rotativ: $2^{-31}-2^{31} /$?
Movement range limitation within soft limit positive	Soft Limit Position Positive	SLPP (old: LR)	Linear: 0 - <stroke> / ? Rotativ: $2^{-31}-2^{31} /$?

Position rated absolute, Inc	Position	PO	$\pm 2^{\prime} 000 ' 000 ' 000 /$?
Position soll (absolute) increment, initial value after powerup	Position Initial Value	POI	$\pm 2^{\prime} 000 ' 000 ' 000$ / ?
Way relative, encoder increment	Way	WA	$\pm 2^{\prime} 000 ' 000 ' 000 /$?
Way (relative) encoder Inkrement, initial value after powerup	Way Initial Value	WAI	$\pm 2^{\prime} 000 ' 000 ' 000$ / ?
Speed Inc/s (encoder counter)	Speed	SP	10-9'000'000 / ?
Speed $\mathrm{Inc} / \mathrm{s}$ (encoder counter), initial value after powerup	Speed Initial Value	SPI	10-9'000'000 / ?
Acceleration Inc/s ${ }^{2}$ (encoder counter)	Acceleration	AC	2'000-1'000'000'000 / ?
Acceleration Inc/s ${ }^{2}$ (encoder counter), initial value after powerup	Acceleration Initial Value	ACI	2'000-1'000'000'000 / ?
Emergency Deceleration Inc/ s ${ }^{2}$	Emergency	ED	10’000-1'000'000'000 / ?
(e.g. for input function $E E / E E$, for errors, if driving in limit switch or soft limit etc.)	Deceleration		
If necessary, the emergency deceleration can be adjusted during operation if there is an emergency deceleration of $>1 \mathrm{~s}$			
\rightarrow In case of emergency the deceleration is always <1 s			
Override, scaling from the Acceleration and Speed	Override	OVRD	1-100 / ?
Override, scaling from the Acceleration and Speed, initial value after powerup	Override Initial Value	OVRDI	1-100 / ?
Percentage S-Curve rounding. Calculation of jerk parameter automatically.	S-Curve	SCRV	1-100 / ?
Percentage S-Curve rounding. Calculation of jerk parameter automatically, initial value after powerup.	S-Curve Initial Value	SCRVI	1-100 / ?
Jerk of trajectory [x10001nc/s ${ }^{3}$] of the completed drive	Acceleration Variation (Jerk), Read only	ACV	?
Movement range limitation within soft limit negative	Soft Limit Position Negative	SLPN (Old: LL)	Linear: 0 - <stroke> / ? Rotativ: $2^{-31}-2^{31} /$?
Movement range limitation within soft limit positive	Soft Limit Position Positive	SLPP (old: LR)	Linear: 0 - <stroke> / ? Rotativ: $2^{-31}-2^{31} /$?

Short

Way Initial Value
Speed
Speed Initial Value
Acceleration
Acceleration Initial Value
Emergency
Deceleration
(e.g. for input function EE/EE, for errors, if driving in limit switch or soft limit etc.) If necessary, the emergency deceleration can be adjusted during operation if there is an emergency deceleration of $>1 \mathrm{~s}$
\rightarrow In case of emergency the deceleration is always <1 s Override, scaling from the Acceleration and Speed
Override, scaling from the Acceleration and Speed, initial value after powerup
Percentage S-Curve rounding. Calculation of jerk parameter automatically.
Percentage S-Curve rounding. Calculation of jerk parameter automatically, initial value after powerup. Jerk of trajectory [x1000Inc/s3] of the completed drive
Movement range limitation within soft limit negative

Movement range limitation within soft limit positive
DESCRIPTION Short CMD PARAMETER

> Home linear motor axis encoder
> Start direction REF function $0=$ positive, $1=$ negative
> $2=$ Gantry REF positive, motors same direction 3 = Gantry REF negative, motors same direction $4=$ Gantry REF positive, motors reverse direction 5 = Gantry REF negative, motors reverse direction

Reference
Direction REF

REF
DRHR 0-5 / ?

11.6.7 Reference Gantry

CMD PARAMETER

Card Identifier of Gantry Slave set in the Master Control Set CI (query), CANopen Node ID, Powerlink Node ID, Remote ID in Master/Slave Configuration Home linear motor axis encoder Start direction REF function 0 = positive, 1 = negative
2 = Gantry REF positive, motors same direction
3 = Gantry REF negative, motors same direction
4 = Gantry REF positive, motors reverse direction 5 = Gantry REF negative, motors reverse direction

Gantry Master Slave offset selection
$0=$ Use automatically determined value (DGMSO) 1 = User defined value (PGMSO)
Responds the automatically detected Gantry Master Salve Offset. This value is used when EGMSO = 0

Value of the gantry master slave offset if EGMSO $=1$. This value can be used to correct the rectangularity of the gantry setup. Changes are corrected directly in the slave and the rectangularity can thus be checked with a dial gauge.

11.6.8 Reference Rotary Motors

Short
CMD PARAMETER

Home function according to program
Direction of motor rotation to seek external coarse sensor, $1=\mathrm{CW}, 2=\mathrm{CCW}$

Speed for seeking external sensor in [inc/s] If there is no external sensor, then set SPH $=0$

Input number for external Home Sensor $0=$ None, 1-8 = Input Number

Rotary direction of motor for seeking z-mark on encoder, $1=$ CW, $2=$ CCW 3 = shortest way (for ROTAX ${ }^{\circledR}$ Rxvp only)

Reference	REF	
Dir Home	DRH	$1-2 /$?
Speed Home	SPH	$0-250$ '000 /?
Input Home	INH	$0-8 / ?$
Dir Z-Mark	DRZ	$1-3 / ?$

Speed for seeking z-mark in [inc/s]
 If there is no z-mark on the encoder, set SPZ = 0
 (ROTAX ${ }^{\circledR}$ Rxvp 10-100'000))

Position of Z-mark in reference to internal home sensor of ROTAX ${ }^{\circledR}$ Rxvp. Will be saved after first reference and remains from then on unchanged. With RXZPO this value can be deleted and ROTAX ${ }^{\circledR}$ Rxvp will be set to default at time of delivery. Kind of position determination when referencing with absolute measuring systems. The position is always reset to the
single-turn position by the referencing.
0 = Calculated determination (default)
1 = Position is read out by the measuring system Reading from the measuring system (setting 1) can lead to the Safety Limited Speed being exceeded if SLS is active. Retains the multiturn position after a reboot. If the position change exceeds the set tolerance, error 53 is displayed

0 = Deactivated (default) $>0=$ Activated with tolerance

Speed Z-Mark
SPZ 0-100'000 / ?

Rotax Z-Mark Position RXZP
$0 / ?$

Enable Absolute Reference ENAR 0-1 / ?

Virtual Multiturn Absolute VMTAE 0 - <Inc per Rev / 2> Encoder

11.6.9 Move Commands

DESCRIPTION

Go direct to rated position absolute, Inc Go to position absolute Go way relative Go to zero-mark on encoder disk Jog (run) positive, v = constant Jog (run) negative, v = constant

Repeat way (command WA) positive <-> negative xx times Repeat way (command WA) in same direction xx times Waiting [ms] time on command RR and RW Waiting [ms] time for command RR and RW, initial value after powerup

Run index number
Run profile
Move DRIVE I_FORCE No. xx
Move DRIVE Force No. xx (available with Forceteq ${ }^{\circledR}$ pro)
Stop program and motion with deceleration

11.6.10 Index (programmed movements)

DESCRIPTION	Short	CMD	PARAMETER
Run index number	Index	IX	1-50
Number of index pre-load for changing index parameters by remote control	Number Index	NIX	1-50
Acceleration write in Index at the NIX preloaded number (stored in non-volatile memory, still effective after power cycle)	Accel. Index	AIX	2-1'000'000 (x1000) $\mathrm{Inc} / \mathrm{s}^{2}$
Acceleration write in Index at the NIX preloaded number (not stored in non-volatile memory, only effective until the next power cycle)	Accel. Index Dynamic	AIXD	2-1'000'000 (x1000) Inc/s ${ }^{2}$
Speed write in Index at the NIX preloaded number (stored in non-volatile memory, still effective after power cycle)	Speed Index	SIX	10-10'000'000 Inc/s
Speed write in Index at the NIX preloaded number (not stored in non-volatile memory, only effective until the next power cycle)	Speed Index Dynamic	SIXD	10-10'000'000 Inc/s
Distance write in Index at the NIX preloaded number (stored in non-volatile memory, still effective after power cycle)	Distance Index	DIX	$\pm 2^{\prime} 000{ }^{\prime} 000 ' 000$ Increment
Distance write in Index at the NIX preloaded number (not stored in non-volatile memory, only effective until the next power cycle)	Distance Index Dynamic	DIXD	$\pm 2^{\prime} 000{ }^{\prime} 000{ }^{\prime} 000$ Increment
Save index type in index for the preselected number with NIX (1 = absolute, 2 = relative) (stored in non-volatile memory, still effective after power cycle)	Type of Index	TYIX	1,2 / ?
Save index type in index for the preselected number with NIX (1 = absolute, 2 = relative) (not stored in non-volatile memory, only effective until the next power cycle)	Type of Index Dynamic	TYIXD	1,2 / ?
	11.6.11 Program / Application		
DESCRIPTION	Short	CMD	PARAMETER
Run program number	Program	PG	1-63
$0=$ Program $1 . .15$ max. 50 program lines, Program $16 . .63$ max. 10 program lines 1 = Program 1.. 5 max. 130 program lines, Program $6 . .63$ max 10 program lines	Program Mapping	PMAP	0,1/ ?
Important: Changes of PMAP parameter clears entire program memory			
Save Application (incl. parameters) to Start-up Key	Save to Start-up Key	SVST	

Force Calibration is started with distance parameter. Value from 1 to $1^{\prime} 000{ }^{\prime} 000=$ Distance in Inc. of the scan run.
? = Returns whether scanned values are available $0=$ Force Calibration delete scanned values

The Force Calibration works iteratively and improves itself in repeated execution. If the motor oscillates during the Force Calibration, then wrong values are stored and the oscillation increases. In this case, the scanned values must be deleted with

FCO before starting a new Force Calibration. In the libraries for the operation with bus module, there exists an input "Iterative FC disable" in the function block JS_MC_ForceCalibration for this case.

Important:

Force Calibration scan drive will begin at current position
Test function to check Force Calibration effect through manual movement of the carriage slider.
2 = Test Force Calibration On (without active compensation)
1 = Test Force Calibration (with active compensation) $0=$ Test Force Calibration off (Servo holds position)

Request Status of Force Calibration:
$0=$ No Force Calibration scan values available
1 = Force Calibration scan values available
Automatic I_Force Drift Compensation Drive in positive direction

Automatic I_Force Drift Compensation Drive in negative direction
I_Force Drift Compensation Settings, bitwise coded: Bit0: Continuous compensation at disabled power stage
Bit1: Automatic compensation before force calibration Bit2: Continuous compensation at enabled power stage at applicable position (see command PIFDC)
Position for I_Force Drift Compensation at enabled power stage, depending on the motor type Maximal approved force-proportional current [x10mA] $0=$ Deactivated \rightarrow As soon as the max. approved current has been hit, info „30" is being activated and can be retrieved over Process Status registry
Bit 15 ,I_FORCE_LIMIT_REACHED" with command TPSR (Refer to chapter 11.6.19 System Information)

Change Limit DR_I_FORCE to $\mathrm{xx} \times 10 \mathrm{~mA}$ value xx will overwrite the current parameter DR_I_Force, until DRIVE I_FORCE END
Driving with limited force until reaching an object or the end position if there is no object.
$x x=[1-10]$ No. of the selected Drive I_Force parameter set

Force-proportional, actual current-value filtered [mA] Actual motor current [mA]

Force Calibration
FC $0-<$ stroke LINAX ${ }^{\circledR} / E L A X{ }^{\circledR}$ or way ROTAX ${ }^{\circledR}$ / ?
Force Calibration Valid FCV $\mathrm{xx} /$?

I_Force Drift	IFDCP	
Compensation Positive		
I_Force Drift Compensation Negative	IFDCN	
I_Force Drift Compensation Settings	IFDCS	0-7/ ?

Position I_Force Drift PIFDC ?
Compensation
Limit I_Force
LIF $\quad 0$ - value of "I run" / ?

Change Limit I Force CLIF xx

Drive I_Force
DIF
xx

I Force Actual
Tell motor current

IFA
TMC

Select sectors which should be active. E.g. $x x=100110->$ active are the sectors 2,3,6 Binary from right side LSB (binary notation, LSB = sector 1) Reads I_FORCE peak value [x1mA] $x x=$ not defined-> Max peak value over all sectors $x x=n->$ peak value of sector n shows the active sectors which force curve did not correctly pass through E.g. $x x=1001->$ Error in sector 1 and 4. (binary notation, LSB = sector 1)
Is taking current actual position as an offset for all sectors with restart of monitoring.
Furthermore the positions „Wait for distance greater/less" and „Jump if distance greater/less" are adjusted by this offset. Provide offset for all sectors with restart of monitoring. xx = [Inc] offset
Furthermore the positions „Wait for distance greater/less" and „Jump if distance greater/less" are adjusted by this offset xx. E.g. $x x=0$, sets offset to 0

Selecting sector number for which parameters shall be changed. $x x=[1-10]$ Sector number, NSEC? $=$ Retrieving the selected sector number. Sector start distance. $\mathrm{xx}=[\operatorname{lnc}]$ starting distance (current position - sector offset) Sector end distance. $x x=[\operatorname{lnc}]$ ending distance (current position - sector offset) Lowest value I_Force in pre-selected sector. x x [x10mA] Highest value I_Force in pre-selected sector. xx [x10mA]

Definition of transitions Entry and Exit in sector xx = activated transition 1,2,3,4 Entry/Exit

Bit 15..12	$11 . .8$	$7 . .4$	$3 . .0$	$x x$
Entry	not used	Exit	not used	
4321	0	4321	0	Transition.
0001	0000	0010	0000	bin
1	0	2	0	hex
4128				dec

Selecting Drive I_Force number in which parameters shall be changed. $x x=$ Drive $I _F o r c e ~ n u m b e r ~ 1-10 . ~ N D I F ? ~=~$ Retrieving selected sector number Acceleration for Drive I_Force xx [x1‘000 inc/s²]

Speed for Drive I_Force in [inc/s]

Limitation of I-Force current while Drive I_Force [x10mA]

Direction Drive I_Force $x x=0$->positive, $x x=1->$ negative

Select Sectors

I Force Peak

Sector I_Force Curve
Failed

Take Position as Sector Offset

Set Sector Offset

Number of Sector for change parameter

Sector I Force Start	SIFS	$\mathrm{xx} /$?
Sector I Force End	SIFE	$\mathrm{xx} /$?
I Force High	IFH	$\mathrm{xx} /$?
I Force Low	IFL	$\mathrm{xx} /$?
Sector Transition	STC	$\mathrm{xx} /$?
Configuration Decimal		
Sector Transition	STCX	$\mathrm{xx} /$?

SSEC $\quad x x /$?

IFPK xx

SIFF $\quad x x /$?

TPSO

SSO $x x$ / ?

NSEC $\mathrm{xx} /$?
/?
/ ?
x / ?
I Force Low

Configuration Decimal

Number of Drive I_Force NDIF $x \mathrm{x} /$?
to change parameter

Acceleration of selected ADIF $x x /$? Drive I_Force

Speed of selected Drive SDIF I_Force

I_Force Limit of selected IDIF 0-2000 / ? Drive I_Force
Direction of selected Drive DDIF $x x /$?

Configuration Hexadecimal

I_Force

DESCRIPTION	Short	CMD	PARAMETER
Tare function Signateq ${ }^{\circledR}$ measuring amplifier $0=$ Clears tare value, force is displayed with offset $1=$ Sets the currently measured force at the Signateq ${ }^{\oplus}$ to 0 ? = Returns the offset value (tare)	Clear Force Offset	CLFO	0,1/ ?
$\begin{aligned} & \quad \text { Set up of Forceteq }{ }^{\circledR} \text { Mode } \\ & 0=\text { Motor current (Forceteq }{ }^{\circledR} \text { basic) } \\ & 1=\text { Force sensor Standard-Mode (Forceteq }{ }^{\circledR} \text { pro) } \\ & 2=\text { Force sensor Elastic-Mode (Forceteq }^{\ominus} \text { pro) } \end{aligned}$	Forceteq Mode	FTM	0-2/?
Bandwidth Force controller	Bandwidth Forceteq pro	BWFP	1-1000 / ?
Spring constant from the workpiece (often string or tape) for the Forceteq-Mode 2	Forceteq Pro Elastic Spring Constant	FTPES	1-10'000'000 / ?
Force Calibration is started with distance parameter. Value from 1 to $10^{\prime} 0000^{\prime} 000=$ Distance in Inc. of the scan run. ? = Returns whether scanned values are available $0=$ Force Calibration delete scanned values	Force Calibration	FC	$\begin{gathered} 0-<\text { stroke LINAX®/ELAX® } \\ \text { or way ROTAX } / \text { ? } \end{gathered}$
The Force Calibration works iteratively and improves itself in repeated execution. If the motor oscillates during the Force Calibration, then wrong values are stored and the oscillation increases. In this case, the scanned values must be deleted with FCO before starting a new Force Calibration. In the libraries for the operation with bus module, there exists an input "Iterative FC disable" in the function block JS_MC_ForceCalibration for this case.			
Important: Force Calibration scan drive will begin at current position			
Test function to check Force Calibration effect through manual movement of the carriage slider. 2 = Test Force Calibration On (without active compensation) $1=$ Test Force Calibration (with active compensation) $0=$ Test Force Calibration off (Servo holds position)	Force Calibration Test	FCT	0,1,2 / ?
Request Status of Force Calibration: $0=$ No Force Calibration scan values available 1 = Force Calibration scan values available	Force Calibration Valid	FCV	$x \mathrm{x} /$?
Maximal approved force [mN] 0 = Deactivated	Limit Force	LF	0-200'000 / ?
\rightarrow As soon as the max. approved current has been hit, info „31" is being activated and can be retrieved over Process Status registry Bit 27 „FORCE_LIMIT_REACHED" with command TPSR (Refer to chapter 11.6.19 System Information)			
Change Limit DR_FORCE to $\mathrm{xx}[\mathrm{mN}]$ value $x x$ will overwrite the current parameter DR_Force, until DRIVE FORCE END	Change Limit Force	CLF	xx
Driving with limited force until reaching an object or the end position if there is no object. $x x=[1-10]$ No. of the selected Drive Force parameter set	Drive Force	DF	xx
Returns the current force applied to the load cell [mN]	Tell Force	TF	

Select sectors which should be active. E.g. $x x=100110->$ active are the sectors 2,3,6 Binary from right side LSB (binary notation, LSB = sector 1) Reads FORCE peak value [mN] $x x=$ not defined-> Max peak value over all sectors $x x=n->$ peak value of sector n

Shows the active sectors which force curve did not correctly pass through E.g. $x x=1001->$ Error in sector 1 and 4. (binary notation, LSB = sector 1)

Is taking current actual position as an offset for all sectors with restart of monitoring.
Furthermore the positions „Wait for distance greater/less" and „Jump if distance greater/less" are adjusted by this offset. Provide offset for all sectors with restart of monitoring. $\mathrm{xx}=[\mathrm{Inc}]$ offset
Furthermore the positions „Wait for distance greater/less" and „Jump if distance greater/less" are adjusted by this offset xx. E.g. $x x=0$, sets offset to 0

Selecting sector number for which parameters shall be changed. $x x=[1-10]$ Sector number, NSEC? $=$ Retrieving the selected sector number. Sector start distance. $x x=[\operatorname{lnc}]$ starting distance (current position - sector offset) Sector end distance. $x x=[\operatorname{lnc}]$ ending distance (current position - sector offset) Lowest value Force in pre-selected sector. xx [mN] Highest value Force in pre-selected sector. xx [mN]

Definition of transitions Entry and Exit in sector xx = activated transition 1,2,3,4 Entry/Exit

Bit 15..12	$11 . .8$	$7 . .4$	3.0	xx
Entry	not used	Exit	not used	
4321	0	4321	0	Transition.
0001	0000	0010	0000	bin
1	0	2	0	hex
4128				dec

Selecting Drive Force number in which parameters shall be changed.
$x x=$ Drive Force number 1-10 NDF? = Retrieving selected sector number Acceleration for Drive Force xx [x1'000 inc/s²]

Speed for Drive Force xx [inc/s]
Force limitation for Drive Force $x x$ [mN]
Direction for Drive Force $x x=0$-> positive, $x x=1->$ negative

Select Sectors

Force Peak

Sector Force Curve Failed \qquad $x \mathrm{x} /$?

Take Position as Sector Offset

Set Sector Offset SSO $x x /$?

Number of Sector for change parameter

Sector Force Start	SFS	$\mathrm{xx} /$?
Sector Force End	SFE	$\mathrm{xx} /$?
Force High	FH	$\mathrm{xx} /$?
Force Low	FL	$\mathrm{xx} /$?
Sector Transition Configuration Decimal Sector Transition Configuration Hexadecimal	STC	$\mathrm{xx} /$?

Number of Drive Force to NDF xx / ? change parameter
Acceleration of selected ADF $x x /$?

Drive Force
Speed of selected SDF xx / ?

Drive Force
Force Limit of selected FDF $x \mathrm{x} /$?
Drive Force
Direction of selected DDF $x x / ?$
SSEC $\quad x x /$?

FPK
XX

TPSO

NSEC $\quad \mathrm{xx} /$? /?

$$
/ ?
$$

$$
x / ?
$$

Drive Force

11.6.14 Signateq ${ }^{\circledR}$

Tare function Signateq ${ }^{\circledR}$ measuring amplifier $0=$ Clears tare value, force is displayed with correction $1=$ Sets the currently measured force at the Signateq ${ }^{\circledR}$ to 0
? = Returns the offset value (tare)
Version number of installed Signateq ${ }^{\circledR}$ firmware
Nominal force [mN] of the sensor according to datasheet

Measuring range $[\mathrm{mN}]$ of the sensor, definable by user Force direction Compression $=0 \mathrm{~N} . . .+x x x$
Force direction Compression /Tension =-xxx... +xxx Force direction Tension =-xxx... 0 N
Sensitivity [nV / V] of the sensor according to datasheet
Force direction
$0=$ Compression/Tension 1 = Compression

2 = Tension
Bandwidth Force controller
Filter bandwidth of the Signateq ${ }^{\circledR}$ measuring amplifier
$0=$ Factory calibration
1 = Custom calibration 2 = Test Report
Bit0: Internal use
Bit1: Custom calibration
Bit2: Factory calibration
Direction of force control. Depends on the mechanical construction. If 0 (default), detection is made during the first drive with limited force into the force sensor after a power-up.
$0=$ Automatic detection (default)
1 = Accordant (pos. encoder direction -> pos. force on sensor) 2 = Contrary accordant (pos. encoder direction -> neg. force on sensor)
Maximum speed for motion as soon as the force is reached.
Limitation prevents fast movements into a mechanical limit
stop during force leaps, e.g. during setup or with decoupled systems (sensor not mounted on the motor). If no limitation is desired, this parameter can be set to max value. $0=$ Speed of the current run $10-9^{\prime} 000 \mathbf{'}^{\prime} 000=$ max. speed [inc/s]

Sensor Model Type max. 29 characters free for user

Sensor series number max. 29 characters

Clear Force Offset
CLFO
0,1/?

Signateq Version	SQVER	
Signateq Sensor Nominal	SQSNF	$0-200 ' 000 /$?
Force		
Signateq Measurement	SQMRP	$0-2000^{\prime} 000 /$?

Range

Signateq Sensor Sensitivity	SQSS	0-25'000'000 / ?
Signateq Sensor Force Type	SQSFT	0-2 / ?
Bandwidth Forceteq pro	BWFP	1-1000 / ?
Signateq Bandwidth	SQBW	$\begin{aligned} & 100,200,300,500,1000 \\ & 2000,3000,5000 / ? \end{aligned}$
Signateq calibration mode	SQCM	0-2 / ?
Signateq available calibration	SQAC	?
Signateq Force Direction	SQFD	0-2/?

Limit Force Reached LFRMS $0,10-99^{\prime} 000$ '000 / ?
J N N I W movin

11.6.15 Input / Output
DESCRIPTION
Short
CMD PARAMETER

Assign type of input function to the with NIF preloaded input
number ($0=$ no function, $1=$ REFERENCE, $2=$ INDEX,
$3=$ PROGRAM, $4=$ SET OUTPUT, $5=$ CLEAR OUTPUT,
$6=$ JOG POSITIVE, $7=$ JOG NEGATIVE, $8=$ CAPTURE POSITION,
$9=$ INTERRUPT PROGRAM, $10=$ STOP IMPULS,
$11=$ STOP IMPULS COUNTER, $12=$ LIMIT SWITCH NEGATIVE,
$13=$ LIMIT SWITCH POSITIVE, $14=$ EMERGENCY EXIT,
$15=$ EMERGEMCY EXIT POWER ON, $16=$ POWER CONTINUE,
17 = PROFILE, $18=$ REFERENCE LIMIT STOP, $19=$ OVERRIDE,
$20=$ PROGRAM EXIT, 21 = DRIVE I_FORCE/DRIVE FORCE,
$22=$ POWER QUIT $)$
Parameter A of input function of with NIF preloaded input number (value depending on input function, according to value described in chapter 11.15.1 Selection of Input Functions) Parameter B of input function of with NIF preloaded input number (value depending on input function, according to value described in chapter 11.15.1 Selection of Input Functions) Parameter C of input function of with NIF preloaded input number (value depending on input function, according to value described in chapter 11.15.1 Selection of Input Functions)

Shows present position captured with input
Shows the position captured with input 12
Set all 8 capture Position Register to 0
Activate capture position function over input 12
Break Delay in [ms]
Attention: no works with the SMU module
Type Input Function TYIF 0-22

Parameter A	PAIF	xx
Parameter B	PBIF	yy
Parameter C	PCIF	cz
Tell Capture Position	CP	$1-8$
Tell Capture Pos. Buffer	TCPB	$1-8$
Clear Capture Position	CLCP	$1-8$ (all)
Capture Pos. Input 12	CP12	0,1
Break Delay	BRED	$1-1000$ (ms) / ?

11.6.16 Correction Table

DESCRIPTION

Status of correction table: $0=$ correction table deactivated 1= correction table activated 2= correction table initialized (physical values = Encoder value) Starting position of the correction table in [inc]

Distance between the entries in the correction table in [inc]

Preselect absolute encoder position in correction table in [inc]

Physical position deviation for preselected encoder position in correction table in [inc]

Correction Table State CTAB 0-2 /?

11.6.17 Event

11.6.18 Limit Position ELAX ${ }^{\circledR}$

Start calibration of the internal mechanical limit stop positive. After the calibration the value can be read with DMLPP.
Position of the detected internal mechanical limit position positive ? = Returns the position of the detected internal mechanical limit stop positive.
$0=$ Deletes the position of the detected internal mechanical limit stop positive

Note:

- If DMLPP is deleted (DMLPP = 0), the value for the internal mechanical limit stop for the reference in positive direction is
<stroke ELAX + 1mm>
- If the value for the internal mechanical limit stop positive is known, this value can be set without calibration (without command MLC).

Position of the detected external mechanical limit stop position negative.
? = Returns the position of the detected external mechanical limit stop negative.
$0=$ Deletes the position of the detected external mechanical limit stop negative Note:

- MLPN always needs to be chosen smaller than MLPP - If MLPN is deleted (MLPN = 0), the value for the internal mechanical limit stop itself is used for the reference in negative direction, which is <-1mm> as per definition.
- The position of an externally mounted mechanical limit has to be accurate. If the entered position of the externally mounted limit stop is wrong, the alignment of the coils to the magnets cannot be completed and the motor won't be capable to drive
Position of the detected external mechanical limit stop position positive.
? = Returns the position of the detected external mechanical limit stop negative. $0=$ Deletes the position of the detected external mechanical limit stop negative.

Note:

- MLPP always needs to be chosen bigger than MLPN - If MLPN is deleted (MLPN $=0$), the value for the internal mechanical limit stop itself is used for the reference in negative direction, which is $<-1 \mathrm{~mm}>$ as per definition.
- The position of an externally mounted mechanical limit has to be accurate. If the entered position of the externally mounted limit stop is wrong, the alignment of the coils to the magnets cannot be completed and the motor won't be capable to drive

Mechanical Limit
MLC
Calibration
Detected Mechanical Limit DMLPP 0, <Stroke ELAX>- <Stroke Position Positive ELAX + 3mm> / ?

Mechanical Limit Position MLPN <-3mm>-<stroke ELAX + Negative $3 \mathrm{~mm}>/$?
Mechanical Limit Position MLPP <-3mm>-<stroke ELAX + Positive
$3 \mathrm{~mm}>/$?
11.6.19 System Information

DESCRIPTION Short CMD PARAMETER

Tell Position TP
Tell Velocity TV

Tell Temperature TT
Tell Voltage Power Supply TVPSM Motor
Tell Status TS

Tell Process Status TPSR
Register

Tell motor current	TMC	
Tell Motion Time	TMT	
Tell Process Time	TPT	
Version	VER	
Version All	VERA	
Version SMU	VERS	
Version Bus Module	VERB	
Version Boot Loader	VERL	
Version Signateq	VERSQ	
Ethernet MAC Adress	EMAC	
MAC address Bus Module	MACB	

11.6.20 Ethernet

KÜRZEL BEF PARAMETER

Ethernet TCP/IP-Adresse
 Example: EIP192.168.2.100 (Default value)
 Ethernet NetMask Example: ENM255.255.252.0 (Default value)
 Ethernet Gateway
 Example: EGW192.168.2.1 (Default value)
 Ethernet Port Nummer
 Example: EPRT10001 (Default value)
 Abfrage der Ethernet MAC Adresse
 Restore the factory settings for the Ethernet TCP/IP
 IP Adress to 192.168.2.100
 NetMask to 255.255.252.0
 Gateway to 192.168.2.1
 Port Number to 10001

Ethernet TCP/IP Adress	EIP	xxx.xxx.xxx.xxx / ?
Ethernet Net Mask	ENM	xxx.xxx.xxx.xxx / ?
Ethernet Gateway	EGW	xxx.xxx.xxx.xxx / ?
Ethernet Port	EPRT	$1-65535 / ?$
Ethernet MAC Adress	EMAC ?	
Reset Ethernet	RESETH	

11.6.21 Bus Module

DESCRIPTION
Baud rate of the optional CANopen interface
Set cycle time [microseconds] in Cyclic Synchronous Position
Mode (DS402). Used RMR for interpolation. Only multiple of
100 micro seconds possible
Versions number of the installed bus module firmware
IP address queries EtherNet/IP modules (from version V4.00)
Reset bus module
MAC address query of PROFINET / Powerlink / EtherNet/IP
bus module

CAN Baud rate	CAB	$1^{\prime} 000-1^{\prime} 000 ' 000 / ?$
PDO Cycle Time	PCT	$100-10 ‘ 000 / ?$
Version bus module	VERB	
IP Address bus module	EIPB	
Reset bus module	RESB	
MAC address bus module	MACB	

DESCRIPTION	Short	CMD	PARAMETER
Re-adjust Bit „P402 Set Point Acknowledge" to behavior. equal or smaller than firmware V3.68H	Set Point ACK disable	SPAD	0,1/ ?
Enable $=1 /$ Disable $=0$ of the automatic reference drive when entering DS402 Mode of Operation 6	Automatic Reference	AREF	0,1/?

11.6.23 Error Handling

DESCRIPTION Short CMD PARAMETER
Error number 01-99
Error number description string
Retrieving error buffer (last 10 appearing info's, warnings or
errors)
Clears the error buffer (TEB)
Description of the error state from the SMU
(Only possible if SMU available)
Description of the error state of the SMU at the time of
error 89 (Only possible if SMU available)

Tell Error	TE
Tell Error String	TES
Tell Error Buffer	TEB
Tell Error Buffer Clear	TEBCRL
Tell Error SMU	TESM
Tell Error SMU History	TESMH

11.6.24 System Monitoring

DESCRIPTION	Short	CMD	PARAMETER
Switching off or turning on the encoder plausibility test: $0=$ Encoder plausibility test on 1= Encoder plausibility test off (for rotary motors only)	Encoder Plausibility Checking Disable	ENCPD	0-1/?
Watchdog for Serial/Ethernet interface $0=$ deactivated	Watchdog	WD	$0-60$ '000 ms / ?
1-60‘000 = Watchdog time in [ms]. If output stage is on and no ASCII command was received over the Serial or Ethernet for <WD> ms, output stage is turned off and error code 77 is shown.			
Echo for Serial/Ethernet interface (Default on) $0=0 \mathrm{ff} / 1$ On	Echo	ECH	0-1/?

The Forceteq ${ }^{\circledR}$ force measurement technology is available in two different modes:

Forceteq ${ }^{\circledR}$ basic: Current based with self calibrated motor -> FORCETEQ ${ }^{\circledR}$ BY MOTOR CURRENT

Forceteq ${ }^{\circledR}$ pro: Precise with Signateq ${ }^{\circledR}$ and external load cell -> FORCETEQ ${ }^{\circledR}$ BY FORCE SENSOR

The force processes of the $\mathrm{XENAX}{ }^{\circledR}$ Xvi servo controller cover four functionalities:

- I_FORCE CALIBRATION: Calibration of the motor through detection of all idle running forces including the payload of the client specific installation on the slide. This creates the basis to precisely determine the external application forces.
- I_FORCE / FORCE LIMITATION: Driving with limited force to an object or an end position if there are no objects (e.g. inserting parts). Or driving with very little force in order to detect an "object's touching position".
- I_FORCE / FORCE MONITORING: Monitoring the force progression by defining sectors in a force/way
diagram (e.g. inspecting switches). These sectors
 can automatically be adjusted towards the "object's touching position".
- I_FORCE / FORCE CONTROL: Integration of different FORCE functions into a program. This is how it becomes possible to use the force processes decentrally in the standalone operation mode. Of course, these FORCE functions can also be invoked by a superior PLC through Ethernet fieldbus.

More information about the force process can be found in the chapter 14 Forceteq ${ }^{\circledR}$ Force Measurement Technology

11.8 Move Axis Motion Diagram

Recording position, speed, IForce, position deviation and force

LOGGING AUTO

Recording starts, as soon as the drive has started. The record lasts until the drive and a possible program have ended

LOGGING TIME
Recording starts, as soon as the drive has started. The record lasts as long as the time indicated (2-8000ms).
record new
Initialization for new recording sequence. Wait for
message "ready for recording next motion". Start
motion in command panel (move axis / by click or by command line) e.g. G44000.

SPEED
Records speed in increments in relation to the position.

I_FORCE
Records current in milliampere in relation to the position.

DEVIATION
Records position deviation in increments.

FORCE
Records the Force in Newton in relation to the position (only with Forceteq@ pro possible).

Zoom

Zoom of curve section on time axis. By dragging the mouse over a time section, this part can be zoomed.
The "Reset" button undoes the zoom action. With the
"Pan" key the time axis can be moved with the mouse.

 Enter command e.g. starting position of the motor, REF, GO, drive on a position or repeat reverse (RR).

CURSOR VALUE
Shows the current values at the time of the cursor in
the recording.
safe file
Saves the motion profile on the computer.
open file
Shows a motion profile which was saved on the computer. The upload has no influence on the parameters of the servo controller.

An Index is a motion profile and contains acceleration (ACC), speed (SPEED), distance (DISTANCE) and TYPE of distance (,,ABSOLUTE" with reference to the zero position or „RELATIVE" with reference to the present position).
The values always refer to increments of the incremental encoder. The INDEXES simplify programming and reduce the communication time by serial control. Execute with IXxx<CR>. A maximum of 50 INDEXES can be predefined.

NEW
 Create new index

Parameter of the Index

 ACCx1000 SPEED DISTANCE\qquad
11.9 Index

A DRIVE I_FORCE is driving with force consisting of acceleration (ACC), speed (SPEED), current (I_FORCE) and driving direction (DIRECTION).

Up to 10 DRIVE I_FORCE can be stored.

Parameters of the Drive I_Force
ACCx1000
SPEED
I_FORCEx10
DIRECTION

COMMANDS
CLEAR = Clears the Drive I_Force
EXECUTE = Drive I_Force will be executed
COPY TO DIFxx = Drive I_Force will be copied into a new Drive I_Force

A DRIVE FORCE is driving with force consisting of acceleration (ACC), speed (SPEED), force (FORCE) and driving direction (DIRECTION).

Up to 10 DRIVE FORCE can be stored.

Parameters of the Drive Force
ACCx1000
SPEED
FORCE
DIRECTION

11.10 Drive I_Force (Forceteq ${ }^{\circledR}$ basic)

Acceleration (2-1'000'000'000 $\times 1000 \mathrm{Inc} / \mathrm{s}^{2}$)
Speed ($10-100^{\prime} 000^{\prime} 000 \mathrm{Inc} / \mathrm{s}$)
Force Limitation (0-2‘000 x10 mA)
POSITIVE $=$ Positive direction, NEGATIVE $=$ Negativ direction

11.11 Drive Force (Forceteq ${ }^{\circledR}$ pro)

Acceleration (2-1‘000'000'000 $\times 1000 \mathrm{Inc} / \mathrm{s}^{2}$)
Speed ($10-100^{\prime} 000^{\prime} 000 \mathrm{Inc} / \mathrm{s}$)
Force Limitation ($0-20^{\prime} 000 \mathrm{mN}$)
POSITIVE $=$ Positive direction, NEGATIVE $=$ Negative direction

COMMANDS

CLEAR = Clears the Drive Force
EXECUTE = Drive Force will be executed COPY TO DFxx = Drive Force will be copied into a new Drive Force

11.12 Sector I_Force (Forceteq ${ }^{\circledR}$ basic)

In the WebMotion ${ }^{\circledR}$ program menu „sector I-force" up to 10 different force sectors can be defined.

Example:
Once an object is touched the force progression shall be examined in a sector of 150 to 170 Increments. When entering the force sector "ENTRY" the force should be between 3 and 4 N . When exiting the sector "EXIT", the force should have reached 4 N . These force specifications are defined with the in the force sector incoming and exiting sector boundaries.

11.13 Sector Force (Forceteq ${ }^{\circledR}$ pro)

In the WebMotion ${ }^{\circledR}$ program menu „sector force" up to 10 different force sectors can be defined.

Example:
Once an object is touched the force progression shall be examined in a sector of 1500 to 3500 Increments. When entering the force sector "ENTRY" the force should be between 0.5 and 1.5 N . When exiting the sector "EXIT", the force should have reached 1.5 N .
These force specifications are defined with the in the force sector incoming and exiting sector boundaries.

Refer more Information in chapter 14 Forceteq ${ }^{\circledR}$ Force Measurement Technology.

11.14 Program

Here you can define program sequences line by line.

PROGRAM

Select, create, copy or delete a program.
LINES
In this list all defined program lines of the present program will be shown.
Maximum number of lines depends on program mapping (PMAP, default $=0$):

PMAP $=0 \quad$ Prog 1-15: 50 lines Prog 16-63: 10 lines
PMAP = 1 Prog 1-5: 130 lines Prog 6-63: 10 lines

COMMANDS

CLEAR = Clears the Program-line
MOVE UP = Program-line will be moved up MOVE DN = Program-line will be moved down

NEW LINE

A new program-line will be inserted in the last line

INSERT LINE

A new program-line will be inserted into any line. The following program lines are shifted by one line.

Description

Reference for $\operatorname{LINAX}{ }^{\circledR} / E L A X{ }^{\circledR}$ / ROTAX ${ }^{\circledR}$ and third party motors
Execute index number xx or change according
operation yy with distance zz Operation „EXE": Drive index No. xx and start a new index after COMPLETION $z z \%$ of the actual index command
ACTION „=": Set index distance to zz ACTION „+": Increase Index distance by zz ACTION „-": Reduce Index distance by zz ACTION „POS": Set Index distance to the slider actual position.
Set Output number xx Clear Output number xx Go to Line number xx
Go to line number $x x$, if input number yy active
Set Loop Counter \# to xxxx (1-10000)
Decrement Loop Counter \#, if not zero, jump line xx. Loop counters can be interleaved with each other Wait xx ms (in 10 ms resolution) Wait for logical High of Input number $x x$ within timeout frame yy, otherwise jump to line zz „error handling" (timeout can only be used locally, not for (remote) Wait to logical Low of Input number $x x$ within timeout frame yy , otherwise jump to line zz „error handling"
(timeout can only be used locally, not for remote)
Set position counter to 0 , (not possible with LINAX ${ }^{\circledR}$ / ELAX ${ }^{\circledR}$, with ROTAX ${ }^{\circledR}$ only possible if it is not referenced)
Execute Profile number xx Start process timer Stop process timer
Command TPT (Tell Process Timer) returns measured time in milliseconds
LINAX ${ }^{\circledR} / E L A X{ }^{\circledR}$ drives to mechanical limited position, refer setup / reference.
Executing Force Calibration, Start Pos xx, End Pos yy
Automatic I_Force Drift Compensation drive $x x=$ POS $\Rightarrow>$ drive in positive direction
$x x=$ NEG $\Rightarrow>$ drive in negative direction
Tare function Signateq ${ }^{\circledR}$ measuring amplifier. The displayed force at the sensor is set to 0 (Forceteq ${ }^{\circledR}$ pro)

Execute DRIVE I_FORCE No. xx (Forceteq ${ }^{\circledR}$ basic)
Execute DRIVE FORCE No. xx (Forceteq ${ }^{\circledR}$ pro)
Selection of active sectors with Bit mask.
E.g. $x x=1010 \rightarrow$ sectors 2 and 4 are active. LSB is on right.
Wait until Limit I_FORCE is reached according parameter DRIVE I_FORCE within timeout xx, otherwise jump to line yy „error handling" (Forceteq ${ }^{\text {® basic) }}$
11.14.1 Program commands

Command

REFERENCE

INDEX

SET OUTPUT

CLEAR OUTPUT
GOTO LINE
GOTO LINE IF INPUT
SET LOOP COUNTER (A-E)
DEC LOOP COUNT (A-E) JNZ LINE

WAIT TIME (ms)
WAIT INPUT NR HIGH

WAIT INPUT NR LOW

CLEAR POSITION

PROFILE
TIMER START
TIMER STOP

REF LIMIT STOP

FORCE CALIBRATION xx, yy
I_FORCE DRIFT COMPENSATION

CLEAR FORCE OFFSET

DRIVE I_FORCE $x x$
DRIVE FORCE
SELECT SECTORS
xx
xx

WAIT LIMIT I_FORCE
$x x, y y, z z$

Parameter Master
/ Slave
MS

MS

Wait until Limit FORCE is reached according parameter DRIVE FORCE within timeout $x x$, otherwise jump to line
ny „error handling" (Forceteq ${ }^{\circledR}$ pro)
Wait for distance (absolute position - Sector Offset) to be greater than $x x$ within timeout frame $y y$, otherwise jump to line az „error handling" Wait for distance (absolute position - Sector Offset) to be smaller than xx within timeout frame yy , otherwise jump to line az „error handling"
Wait for process status register Bit xx High within timeout frame ty, otherwise jump to line ez „error handling"
Wait for process status register Bit xx Low within timeout frame yb, otherwise jump to line ez „error handling"
Is taking the actual position as offset value for all sectors followed by the restart of monitoring. Furthermore the positions "Wait for distance greater/less" and "Jump if distance greater/less" are being adjusted by the offset as well. Setting offsets for all sectors followed by the restart of monitoring. $\mathrm{xx}=[\mathrm{Inc}]$ Offset
Furthermore the positions "Wait for distance greater/less" and "Jump if distance greater/less" are being adjusted by the offset xx as well. e.g. $x x=0$, sets offset incl. TAKE POS AS SECTOR OFFSET to 0 Changing Limit DR_I_FORCE to $\mathrm{xx} \times 10 \mathrm{~mA}$ Value of I_FORCE will overwrite the current parameter

I_Force in DRIVE I_FORCE until DRIVE I_FORCE END
(Forceteq ${ }^{\circledR}$ basic)
Changing Limit DR_FORCE to xx mN Value of FORCE will overwrite the current parameter Force in DRIVE FORCE until DRIVE FORCE END
(Forceteq ${ }^{\circledR}$ pro)
Jump to line $z z$ if distance $x x$ (absolute position - sector offset) greater than xx
e.g. driving distance was too big after force was reached
Jump to line az if distance (absolute position - sector offset) smaller than xx
e.g. driving distance was too small after force was reached
Jump to line xx "error handling" if one or more sectors are not passed correctly. Only active sectors are being
tested. Caution: Before this analysis can be done,
"DRIVE I_FORCE END" has to be completed.
(Forceteq ${ }^{\circledR}$ basic)
Jump to line xx "error handling" if one or more sectors are not passed correctly. Only active sectors are being tested. Caution: Before this analysis can be done, "DRIVE FORCE END" has to be completed.
(Forceteq ${ }^{\circledR}$ pro)

Stop Drive I_Force, current position = set point position, parameter LIMIT DR_I_FORCE inactive (Forceteq ${ }^{\circledR}$ basic)
Stop Drive Force, current position = set point position, parameter LIMIT DR_FORCE inactive (Forceteq ${ }^{\circledR}$ pro)

Power stage turned off,
the linear motor can be moves by hand. Power continues (>PWC)
Turning on the power stage while using the most recent absolute position and without the need of referencing the linear motor, e.g. after error 50 or after "Power Quit". This is only possible as long as the logic supply has not been interrupted after the linear motor was referenced. Program is being ended and does not proceed to last line. Beneficiary for „error handling"

Important Note:
All entries in menu application / program must be
"saved" in order to be activated

MS: Master/Slave function can be started on another controller. LOC = Local, ID1...4 = Device with according Card Identifier (CI)

DRIVE I_FORCE END
DRIVE FORCE END
POWER QUIT MS
POWER CONTINUE

Example: Initialization LINAX ${ }^{\circledR} / E L A X{ }^{\circledR}$

This example shows the initialization of a LINAX ${ }^{\circledR} / E L A X{ }^{\circledR}$ linear motor with the command REFERENCE which then drives to a defined starting position (INDEX 1).

The start position is free to choose as long as it is within the stroke of the motor. In this example the axis drives to start position 0 .

Important:

The command REFERENCE has to be completed once after powering on the servo controller. Only after reference, other motion commands are possible.

Example: Initialization ROTAX ${ }^{\circledR}$ or third party

 motorsThe reference function for rotary motors can be defined in the menu setup / reference (refer chapter 11.20.3 Reference ROTAX ${ }^{\circledR}$ und Third Party Motors).

With this function the motor drives first to a
reference switch (approx. zero) and then to the encoder Z-mark.

If reference position differs from starting position, an index (INDEX 1) can be executed to move to start position.

The program starts with the ASCII command "PG1" in the menu move axis / by command line or by activating an input function "PG1".

OUTPUT FUNCTIONS
Assigning output functions to a physical output. ON und OFF of the outputs by mouse click.

INPUT FUNCTIONS
Assigning input functions to a physical input. Choice of high- or low-activity of all inputs. Input 9-12 binary coded.

In the operations overview, the physical input and output conditions are displayed.

11.15 I/O Functions

11.15.1 Selection of Input Functions

LINAX ${ }^{\circledR}$: Reference for LINAX ${ }^{\circledR}$, travels the distance of two coded reference marks and calculates the absolute position according LINAX ${ }^{\circledR}$ linear motor.
ELAX ${ }^{\circledR}$: Reference for $\mathrm{ELAX}^{\circledR}$, the absolute potion is determined by driving to a mechanical limit.
ROTAX ${ }^{\circledR}$ and third party motors: Complete Reference according to REFERENCE for ROTAX ${ }^{\circledR}$ and third party motors...

Execute index number xx or change according operation yy with distance zz Execute Program xx

Set output xx Clear output $x x$

Drive (Jog) positive (const. speed xxxxx inc/sec) while input \# is active

Drive (Jog) negative (const. speed xxxxxx inc/sec) while input \# is active

Capture Position, on triggered edge at input Interrupt program, while Input active

Stop Impulse, edge triggered*) If a LINAX ${ }^{\circledR}$ is connected, it behaves like "STOP IMPULS COUNTER"

Stop Impulse Counter, like "STOP IMPULS" but does not set position counter to 0^{*})

Limit-switch negative*)
Limit-switch positive*)
Emergency Exit with power off*)
Emergency Exit with power on, Position stop (Function can only be used without bus module. With bus module, apply function "EMERGENCY EXIT") Power ON continue, keep encoder counter Execute Profile No. xx

Reference Limit Stop, also refer menu setup / reference Speed and acceleration will be reduced by xx percent

Stops and quits active program Drive I_Force No. xx (Forceteq ${ }^{\circledR}$ basic) Drive Force No. xx (Forceteq ${ }^{\circledR}$ pro)

Power stage turned off, the linear motor can be moved by hand.
*) Stop with ED
(Emergency Deceleration) braking ramp

REFERENCE

INDEX

PROGRAM
SET OUTPUT
CLEAR OUTPUT
JOG POSITIVE

JOG NEGATIVE xxxxx

CAPTURE POSITION
INTERRUPT PROGRAM
STOP IMPULS

STOP IMPULS COUNTER

LIMIT SWITCH NEGATIVE
LIMIT SWITCH POSITIVE
EMERGENCY EXIT
EMERGENCY EXIT POWER ON

POWER CONTINUE
PROFILE
REFERENCE LIMIT STOP

OVERRIDE
PROGRAM EXIT
DRIVE I_FORCE
DRIVE FORCE xx
POWER QUIT
xxxxx
xx
$x x, y y, z z$
xX
xx

Notes to Input Functions:

Except "EMERGENCY EXIT", "EMERGENCY EXIT
POWER ON" all input functions must only be parameterized in a Pick \& Place Maser or Gantry

Master.
For rapid deceleration in emergency shut down situations ("LIMIT SWITCH NEGATIVE", "LIMIT SWITCH POSITIVE", "EMERGENCY EXIT",
"EMERGENCY EXIT POWER ON", "STOP IMPULS", "STOP IMPULS COUNTER") the special ED (Emergency Deceleration) can be given a value (COMMAND > ED
xxxxx).
The Emergency Exit functions have the highest priority and are always activated immediately. As long as "EMERGENCY EXIT" is active no other function can be executed.

For the other functions the following applies: If another function is already active it has to be finished before the next one is started. If several function calls are current at the same time, then the one with the lowest input number is executed first.

To run a program endlessly the assigned input can be simply left active.

With "INTERRUPT PROGRAM" the program being executed can be interrupted. If IP becomes inactive the interrupted program will be continued directly.

With "STOP IMPULS COUNTER" the running movement is stopped and aborted. A new travel command can then be executed even with unreleased stop impulse ("STOP IMPULS COUNTER" active).

> REFERENCE has been completed In motion, motor is running End of program
> Trigger (5 ms , defined by TGU, TGD commands)
> Error pending Release brake In position, within deviation target position (DTP) Limit I_Force reached (command LIF) (Forceteq ${ }^{\oplus}$ basic Limit Force reached (command LF) (Forceteq ${ }^{\oplus}$ pro) I Force In Sector, when motion is completed (Forceteq* basic) Force In Sector, when motion is completed (Forceteq ${ }^{\oplus}$ pro) In Sector (during and after motion is completed) In Force (during and after motion is completed) Warning pending Information pending STO Feedback 1 STO Feedback 2 SS1 Feedback 1 SS1 Feedback 2
SS2 Feedback 1
SS2 Feedback 2
SLS Feedback 1
SLS Feedback 2

* Feedbacks are status information and not SMU safety functions. Only possible with optional SMU (Safety Motion Unit). Motor types can be controlled with a XENAX ${ }^{\circledR}$ servo controller. The output function BRK (Brake) can be assigned to one of the controller outputs and used in combination with the BRKD (Brake delay) parameter.

This function allows the activation of a time delay by turning off the power stage. First the brake control signal output is set to low (brake is active) and after BRKD milliseconds (setting range from 1 to 1000 ms) the power stage is turned off

This feature allows an active braking with a switchedon power stage and after this a controlled power stage turn off, when the brake is safely on. The time delay is only effective by turning off the power stage.

11.15.2 Selection Output Functions

REFFERENCE

IN MOTION
END OF PROGRAM
TRIGGER
ERROR
BRAKE
IN POSITION
I FORCE MAX LIMIT
FORCE MAX LIMIT
I FORCE IN SECTOR
FORCE IN SECTOR
IN SECTOR
IN FORCE
WARNING
INFORMATION
STO1*
STO2*
SS11*
SS12*
SS21*
SS22*
SLS1*
SLS2*
11.15.3 Operation with Additional Holding Brake

11.16 Profile (Velocity)

Before profile curve starts, the linear motor has to be located at the predefined start position.

EDIT
NEW PROFILE = Enter new profile CLR PROFILE $=$ Clear profile This list contains all predefined profiles.

PARAMETERS
Set up of the parameters in

S-CURVE

POSITION

POSITION
SPEED
ACCx1000

PROFILE CHECK

Defined and tested profiles have to be stored in the servo controller under „save".

A profile can be started with the command PRFx.
X represents the profile number.
Profiles can also be started as input function or in a program.
The $\mathrm{XENAX}^{\circledR}$ servo controller is able to store up to five profiles.

The profile definition includes a start position as well as absolute end-position, end-speed and acceleration of each profile segment. The result of these indications is
the segment type (Speed up, Slow down, constant speed).
The "Profile Check" tests if the entered values can be realized with the connected linear motor.

CURRENT PROFILE

Percentage S-curve rounding of the profile. Automatic calculation of jerk parameter for each profile segment. First panel: Input absolute start position

End position of corresponding profile segment
End speed of corresponding profile segment
Acceleration within profile segment

The parameters will be checked on drivability (is distance long enough for demanded speed and acceleration ?)
Correct profile segments are colored in green, wrong segments are red and untested segments are orange

11.17 Captured Pos

The $X_{E N A X}{ }^{\circledR}$ servo controller has two special functions to read the current position of the motor.

Record function of the actual position controlled by Input
In the WebMotion ${ }^{\circledR}$ menu I/O, you can select the record function CPOS for all digital inputs 1-8.

Reaction time > 4 ms .
(Input 1 = Pos Input 1 etc.
ASCII command: TCPn ($n=$ register number)

Record function of the actual position controlled by edge

With each increasing edge at input 12 , the current position of the motor is written in a buffer register
(Start is Captured Pos 1).

Reaction time ~ 4-6 s .
(First edge position = Captured Pos 1 etc.) ASCII command: TCPn ($n=$ register number)

Function is available over Jenny Science bus module in asynchronous operation, too.

Object	Sub Idx		ASCII
5000h	0×5010	CLCP Clear all Captured Position	CLCP
	0×5015	Captured Position Mode Input 12	CP120
	0×5016	Captured Position Mode Input 1..8	CP121
5003h	0×37	Read Buffer Position (1..8)	TCPn (n=1..8)
	0×38	Return of value	

11.18 State Controller

The closed loop control system consists of a state controller with observer.

Basic Settings

These settings consent a very easy and clearly arranged controller configuration for most common applications.

Basic PAYLOAD
Additional payload on the linear motor in g . The weight of the motor carriage slider is automatically taken into consideration with the motor identification.

Basic INERTIA (only for ROTAX ${ }^{\circledR}$ and Third Party Motors)

Adjustment of the external torque of inertia. If a gear box is placed between the motor and the load, you must adjust the external torque of inertia according to the motor shaft. The gear transmission ration needs to be squared.
e.g. With a gear transmission ratio of $20: 1$, we need to reduce the external torque of inertia by a factor of 400 .

For direct drive linear motors, it is important to set the parameter for the moment of inertia of the external payload (INERTIA), otherwise the linear motor oscillates. Because there is a factor of 10^{-9}, there can be very large values. If so, please enter the
parameter in the corresponding field.
Calculation Example: The external payload is a homogenous disc of 1.1 kg and $\emptyset 200 \mathrm{~mm}$.

Formula is as following:

$$
J=\frac{1}{2} m \cdot r^{2}=5.5 \cdot 10^{-3} \mathrm{kgm}^{2}
$$

scaling factor with 10^{9} results in a parameter value of 5‘500‘000.
(Please refer to XENAX ${ }^{\circledR}$ Servocontroller/General files for XENAX ${ }^{\circledR}$ Xvi/PARAMETERIZATION OF ROTATIVE.zip on www.jennyscience.ch/en/download.)

Basic GAIN POS
Gain of position controller. This parameter must be reduced when payload is increased.

The "Auto Gain" function automatically proposes a value

Consult also the TUTORIAL Video

 Tutorial 2: Initial XENAX ${ }^{\circledR}$ Xvi state controller setup on our website. In this video you will see the basic settings of the XENAX ${ }^{\circ}$ Xvi servo controller for Jenny Science linear motor slide.

Auto Gain

Sets the gain of position controller based on the entered payload value.
This is a theoretically calculated value. A small adjustment might be necessary and can be completed with "GAIN POS".

Noise GAIN CUR
Gain of current controller. The reduction of this gain consents a diminution of noise emissions in case of sound-sensitive environments.

Deviation POS ACT

Maximum position deviation in encoder increments. If this value is exceeded, the error 50 occurs and flashes on the 7-segment display.

Deviation TARGET

Permissible position deviation in the target point until the status "in position" comes up.

Default
Standard setting of the different parameters. All parameters can be manually modified during the controller tuning and can be reset to default values with the „Default" button.

Advanced
Switch to advanced controller configuration parameters

Advanced Settings
These settings permit an advanced controller tuning for complexes constructions affected by mechanical vibrations

Stability STAB - DYN
This parameter is set per default at 0 and consents to set the controller stability against external disturbances.
Settings in positive direction can improve the dynamic response of the system for basic mechanical construction with small payloads.
Settings in negative direction can reduce the sensitivity of the system to mechanical vibrations.

Avoid vibration FREQ
Current filter frequency. The filter is best suited for the reduction of vibrations with well pronounced frequencies Typical values are in between $300-500 \mathrm{~Hz}$. At a value of 0 , the filter is not active. The frequency can be automatically detected with an internal scan
function (refer to chapter 11.18.1 F Setting) or eventually with the help of a smartphone app. There are 2 types of filters available "active" and "notch" which can be active on different frequencies.

The "active" is to be preferred, as it has little influence on the control loop performance. For resonance frequencies with a wide spectrum, a "notch" filter should be used.

Swing out reduction
This feature permits an automatic modification of the target trajectory, so that the settling time after a finished move can be reduced. For this swing out reduction, two parameters have to be identified and set:
damping and frequency of the oscillation. Setting one of the two parameters at 0 disables this feature.

Important Note:

The calculation of the target trajectory can not be abruptly changed in motion. After setting a new value for frequency or damping the axis should remain at standstill at least for 1000 ms , before so that the new set of parameters will be inconsistent. (refer to Info 27 in chapter 17 Error Handling).

Attention:

In the case of cyclic interpolated target position operation with a superordinate PLC, the internal controller desired trajectory is modified and the original target position will be reached with some time delay. The correct reaching of the target position must be ensured, tracking the actual position value, prior to start a new motion.

Swing out reduction DAMPING

This parameter consents to set the damping of the mechanical swing out oscillation in \% and depends on the load.

Swing out reduction FREQ

This parameter permits to set the frequency of the mechanical swing out oscillation with a resolution of
0.1 Hz . These oscillations exhibit low frequencies
(usually below 30 Hz).
The slowest possible frequency to be set is 2 Hz .

This frequency can be extracted for the "DEVIATION" curve in "Motion Diagram" if the ratio between load and slider load is sufficiently high.
If this is not the case, this frequency can be determined with the help of a highspeed camera, an acceleration sensor or a smartphone app for vibration measurements.

Basic Settings
Switch to the basic controller configuration parameters.

The band width of the position control (GAIN POS) should be set as high as the movements can be completed within the tolerable position deviation but
before the motor begins to oscillate. In some applications, usually with high payloads, it sometimes happens that no setting can be found that meets both criteria. If the motor with a set band width begins to oscillate because of a resonance in the system, this oscillation can possibly be suppressed with a filter.

In the menu "state controller" in WebMotion ${ }^{\circledR}$ the correct PAYLOAD and the required GAIN POS have to
be set. If the motor oscillates, the resonance frequency can be found and suppressed with the frequency analysis function.

With the button „Scan>", the frequency analysis pops
up.

When operating, the frequency analysis can be started anytime. But because the current of the motor is being analyzed for the frequency analysis the, the output stage must be turned on. As soon as the analysis is completed, the measuring results are shown in WebMotion ${ }^{\circledR}$ and the frequency can be set.

Settings for the Frequency Analysis:

Recordable Time:

The longer the recording time is, the higher is the
frequency resolution, but the smaller is the measurable frequency range. For each recordable time, the according measurable frequency range will be shown. Please begin with the minimal recording time of 0.4 s (with the maximal frequency range). For low resonance frequencies, the analysis can be repeated with higher recording time and reduced frequency range.

Go while F Analysis

Turned off:
During the frequency analysis there is no movement of the axis. Please select this option, when the analysis should be completed in halt mode or when there is already a movement active (e.g. through a running program or through a superior PLC).

Turned on:
During the frequency analysis, the axis moves to the indicated position within the selected recording time.

F Analysis

Starts the frequency analysis (and the movement if "Go while F Analysis" is turned on).

Set
If the cursor is located in the adjustable filter frequency range (Notch: 160...2000Hz, Active: $200 . . .2000 \mathrm{~Hz}$), the filter frequency can be set according to the frequency the cursor shows by clicking the button „Set". Directly after the frequency analysis, the cursor is automatically located on the frequency with the maximal amplitude within the adjustable filter frequency range. It is likely that this is where the resonance frequency is. However, the cursor can be moved anytime to set another filter
frequency.
If the filter shall be turned off, then the button "Off" can be pushed.

> F Analysis

Process of a Frequency Analysis:

This process shows a typical process of a frequency analysis:

Notes to frequency analysis:

- The filter frequency might not always be able to clear the oscillation. Especially when the resonance frequency is low, the controller can possibly be affected too much by the filter frequency and the oscillation won't disappear. In this case, please reduce GAIN POS until the oscillation disappears.
- If there are multiple resonance frequencies, try to put the filter frequency in the approximate middle of the resonance frequency.
- On frequency 0 , the mean current will be displayed during the frequency analysis. It corresponds to the DCportion of the motor current, which is rarely 0 .

Diagram Amplitude

In this diagram, the amplitudes of all existing frequencies in the motor current are shown. The amplitude and the frequency of the cursor position are displayed on the left side of the diagram.

Diagram I-Motor
This diagram displays the motor current for the frequency analysis. The motor current and the recording time at the cursor position are displayed on
the left side of the diagram. Furthermore, the same legend shows the position the linear motor slide was located, at the time of the recording.

11.19 Motor

11.19.1 Motors $\operatorname{LINAX}^{\circledR}$ and ELAX ${ }^{\circledR}$

MOTOR TYPE
The connected motor type of LINAX ${ }^{\circledR}$ and ELAX ${ }^{\circledR}$ series will be recognized and shown automatically.

I STOP
Continuous current limitation in standstill.

I RUN
Continuous current limitation while moving.

NUMBER OF POLE PAIRS
LINAX ${ }^{\circledR}$ Lx and ELAX ${ }^{\circledR}$ Ex linear motor pole pairs = 1

INC PER REVOLUTION

Number of encoder increments per revolution.

Linear motor axis:
Lxc 44F04, INC PER REVOL = $12^{\prime} 000$
other LINAX ${ }^{\circledR}$ products Lxc, Lxe, Lxu, Lxs,
INC PER REVOL $=24^{\prime} 000$
ELAX ${ }^{\circledR}$, INC PER REVOL $=14^{\prime} 171$
PHASE DIRECTION
Direction of phase control
U, V, W or V, W, U, depending on motor type. LINAX ${ }^{\circledR}$ / ELAX ${ }^{\circledR}$ linear motor, PHASE DIR $=0$

PHASE OFFSET
Correction of electrical angle, in accordance with the orientation of the coil to the magnet. Value for all LINAX ${ }^{\circledR}$ and ELAX ${ }^{\circledR}$ products and the most of rotary motors PHASE OFFSET = 0

11.19.2 Motor ROTAX ${ }^{\circledR}$

MOTOR TYPE
The connected motor type of ROTAX ${ }^{\circledR}$ series will be recognized and shown automatically.

I STOP
Continuous current limitation in standstill.

I RUN
Continuous current limitation while moving.

NUMBER OF POLE PAIRS
Number of pole pairs of AC / DC / EC brushless servo motors. For DC brush-type servo motors, set POLE

PAIRS to 0.

INC PER REVOLUTION
Number of encoder increments per revolution by AC / DC / EC brushless servo motors. Not used for DC brush-type servo motors.

PHASE DIRECTION
Direction of phase control $\mathrm{U}, \mathrm{V}, \mathrm{W}$ or $\mathrm{V}, \mathrm{W}, \mathrm{U}$, depending on motor type. Can be detected with command PHDD.
With DC brush-type servo motors:
PHASE DIR $=0$, if motor shaft turns clockwise with direct
DC-supply voltage.
PHASE DIR $=1$, if motor shaft turns counter clockwise with
direct DC-supply voltage.

PHASE OFFSET
Correction of electrical angle, in accordance with the orientation of the coil to the magnet. Value for the most of rotary motors PHASE OFFSET $=0$

ROTOR INERTIA
Rotor moment of inertia of the motor, with factor 10^{9}.
TORQUE CONST
Torque constant of the motor, with factor 10^{6}.
INDUCTANCE
Phase to phase inductance of the motor.

RESISTANCE
Phase to phase resistance of the motor.

11.19.3 Third Party Motors

THIRD PARTY MOTOR

Motors that are sold by Jenny Science, are available in the database and can be selected.

For parameterization of rotary servo motors, refer to the document XENAX ${ }^{\circledR}$ Servocontroller/General files for XENAX ${ }^{\circledR}$ Xvi/PARAMETERIZATION OF ROTATIVE.zip on www.jennyscience.ch/en/download.

I NOM (FOR I2T)
Acceptable thermic continuous current. Used for $I^{2} T$ monitoring and current limitation in standstill.

I PEAK
Continuous current limitation while moving.

NUMBER OF POLE PAIRS
Number of pole pairs of AC / DC / EC brushless servo motors. For DC brush-type servo motors, set POLE PAIRS to 0.

INC PER REVOLOLUTION
Number of encoder increments per revolution by AC / DC / EC brushless servo motors. Not used for DC brush-type
servo motors.

PHASE DIRECTION
Direction of phase control
U, V, W or V, W, U, depending on motor type. Can be detected with command PHDD.
With DC brush-type servo motors:
PHASE DIR $=0$, if motor shaft turns clockwise with direct
DC-supply voltage.
PHASE DIR = 1, if motor shaft turns counter clockwise with direct DC-supply voltage.

PHASE OFFSET

Correction of electrical angle, in accordance with the orientation of the coil to the magnet. Value for the most of rotary motors PHASE OFFSET $=0$

ROTOR INERTIA
Rotor moment of inertia of the motor, with factor 10^{9}.

TORQUE CONST
Torque constant of the motor, with factor 10^{6}.

INDUCTANCE

Phase to phase inductance of the motor.

RESISTANCE

Phase to phase resistance of the motor.

11.19.4 Position Overflow

For ROTAX ${ }^{\circledR}$ servo motor types and Third Party Rotative Motors, which are operated e.g. as rotary tables always in the same direction of rotation, it can occur that the encoder position reaches very high positive or negative values

In order to ensure that the position can be continuously incremented in positive or negative direction, a controlled overflow mechanism is integrated in XENAX ${ }^{\circledR}$ servo controller.

The maximum position values correspond to $2^{31}-1=2^{\prime} 147^{\prime} 483^{\prime} 647 \mathrm{inc}$ in positive direction and $-2^{31}=-2^{\prime} 147^{\prime} 483^{\prime} 648$ inc in negative direction. The overflow takes place between these two values

2'147'483'647 <>-2'147'483'648

Example: positive overflow

Actual Position: 2'147'483'646 inc Relative Motion: 10 inc

Motion:
Start position: 2'147'483'646 inc
2'147'483'647 inc -2'147'483'648 inc $-2^{\prime} 147^{\prime} 483^{\prime} 647 \mathrm{inc}$

Target position: -2'147'483'640 inc

Example: negative overflow
Actual Position: - $\mathbf{2}^{\prime} 147^{\prime} 483^{\prime} 648$ inc Relative Motion: -20 inc

Motion:
Start position: - $\mathbf{2 '}^{\prime} 147^{\prime} \mathbf{4 8 3} \mathbf{\prime}^{\prime} 648$ inc 2'147'483'647 inc 2'147'483'646 inc

Target position: 2'147'483'628 inc

-1 inc

11.20 Reference

11.20.1 Reference LINAX ${ }^{\circledR}$

11.20.1.1 Reference Absolute, According Reference Marks

REFERENCE Selection

Default, reference over two reference marks on the measuring scale with calculation of the absolute position. This position refers to the mechanical zero point of the LINAX ${ }^{\circledR}$ linear motor axes.

DIRECTION
Enter start direction of the reference travel direction:

POSITIVE (DEFAULT) $=$	Reference direction up. Away, from absolute zero point, in positive direction.
NEGATIVE =	Reference direction down, direction towards absolute zero point.
GANTRY $=>$ POS $=\quad$Motors in same direction up, in positive direction (away from zero point).	
GANTRY => NEG = \quadMotors in same direction, negative direction (towards zero	
point).	
GANTRY $==>P O S=\quad$	Motors in opposite direction up.

11.20.2 Reference ELAX ${ }^{\circledR}$

$E L A X^{\circledR}$ does not possess Z-marks on the measuring scale.
The absolute position is determined by driving on a mechanical limit. The direction of the reference can be positive or negative (refer to ASCII command "DRHR")

If there are no externally mounted limit stops (,MLPN" $=0$ and „MLPP" = 0), the reference will be completed by the internal mechanical limits of ELAX ${ }^{\circledR}$ itself. ASCII command „MLPN" $=$ Mechanical Limit Position Negative ASCII command "MLPP"= Mechanical Limit Position Positive

Negative Reference (DRHR = 1) The slide drives in negative direction until the mechanical limit is recognized. This position will then be set to <$1 \mathrm{~mm}>$ as per definition. In order to complete the reference, the slide moves then to the absolute position 0 .

ASCII command "DRHR"= Direction REF
Positive Reference (DRHR = 0) The slide drives in positive direction until the mechanical
limit is recognized. If the calibration of the internal mechanical limit was completed (MLC, Mechanical Limit
Calibration)positively, the current position is set to the value "DMLPP". If no calibration of the internal mechanical limit was completed positively („DMLPP" = 0),the current position is set to <stroke ELAX + 1mm> as per definition. In order to complete the reference, the slide moves then to the absolute position <stroke ELAX +1 mm >. MLPP $\neq 0$), the reference (REF) will be completed to one of the externally mounted limit stops. ASCII command "MLPN" = Mechanical Limit Position Negative ASCII command „MLPP"= Mechanical Limit Position Positive

Negative Reference

The slide drives in negative direction until the mechanical limit is recognized. This position will then be set to the value of „MLPN". In order to complete the reference, the slide drives to the absolute position <MLPN +1mm>.

Positive Reference

The slide drives in positive direction until the mechanical limit is recognized. This position will then be set to the value of „MLPP". In order to complete the reference, the slide drives to the absolute position <MLPP - $1 \mathrm{~mm}>$.

Important Note:

The position of an externally mounted mechanical limit has to be accurate. If the entered position of the externally mounted limit stop is wrong, the alignment of the coils to the magnets cannot be completed and the motor won't be capable to drive. If the ELAX ${ }^{\circledR}$ slide is driven to the internal negative limit position, the slide is positioned at <-1mm> as per definition. The position of an externally mounted limit stop has to be indicated in relation to <-1mm>
11.20.2.1 Reference with Internal Limit

11.20.2.2 Reference with External Limit

For ROTAX ${ }^{\circledR}$ and third party motors only, for LINAX ${ }^{\circledR}$ or ELAX ${ }^{\circledR}$ please use directly command „>REF".

CLOCKWISE = clockwise COUNTER CLOCKWISE = counter clockwise

REF DIR
Defines start direction for searching the external REF sensors 1 = CLOCKWISE, 2 = COUNTER CLOCKWISE

REF SPEED
Defines speed to search the external REF sensor.
If no home sensor exists, then set this value to 0 .

REF INPUT

REF sensor external, input number (NONE or 1-8).
Z-MARK DIR
Defines start direction for searching the Z-mark on encoder 1 = CLOCKWISE, 2 = COUNTERCLOCKWISE. Or 3 = ON SHORTEST WAY (shortest way, only possible at ROTAX ${ }^{\circledR}$ Rxvp).

Z-MARK SPEED
Speed to search the Z-mark. If no Z mark (Reference mark) exists, then set this value to 0 .

CLEAR OUPTPUTS
Set all outputs to OFF after reference.

VIRT MULTITURN (only available with ROTAX ${ }^{\text {® }}$) By activating the Virtual Multiturn function, the position is retained by the servo controller after a
reboot as long as the position has not changed beyond the set tolerance when the servo controller is switched off.

VIRT MULTITURN TOL

Tolerance window of the encoder position for the virtual multiturn. If the position of the axis changes more than this tolerance window when the virtual multiturn function is switched on, error 53 is displayed.
11.20.3 Reference ROTAX ${ }^{\circledR}$ und Third Party Motors

Note for ROTAX ${ }^{\circledR}$ Rxhq:
Due to the absolute position, the ROTAX ${ }^{\circledR}$ Rxhq is immediately ready for operation after power-on, no reference drive is necessary. If this is performed deliberately, the position changes back to the singleturn position.
For this purpose, the Z-MARK DIR must be set to 0 and the REF INPUT to NONE.
The position of the encoder immediately after starting up, always has a value in the first revolution (example with encoder resolution
$120000 \mathrm{lnc} /$ revolution value between 0 and
119'999Inc.). E.g. in case of a mechanical stop the movable range of the encoder changes depending on the range (between 0 and mechanical stop in positive
direction or between 0 and mechanical stop in negative direction) in which the motor is starting up.

Selection REFERENCE LIMIT STOP
After the ordinary reference of a LINAX ${ }^{\circledR}$ or $\mathrm{ELAX}^{\circledR}$, it is possible drive to a mechanical stop. Important: This function is optional and has no influence to the absolute positioning counter.

CREEP DIR
POSITIVE (Travel direction positive) NEGATIVE (Travel direction negative)

CREEP SPEED

Speed to mechanical stop [$\mathrm{Inc} / \mathrm{s}$].
CURRENT LIMIT
Nominal motor current [x 10 mA] during reference Power F = motor current x force constant

REF WINDOW

Maximal allowed variation compared to last REF position [Inc].

REF WINDOW $=0$, testing off Output Function REF = 1 REF WINDOW $=1$, testing on Variations within allowed tolerance (REF Window): Output function REF = 1, current REF position will be new reference position. Variations out of allowed tolerance: Output function REF $=0$, The subsequent reference will be the new reference position.

11.20.4 Reference to Mechanical Stop

11.20.5 Correction Table for LINAX ${ }^{\circledR}$ / ELAX ${ }^{\circledR}$

Depending on the application's construction in which a LINAX ${ }^{\circledR}$ or ELAX ${ }^{\circledR}$ linear motor axis is used, it is possible that the encoder position does not correspond to the actual physical position of the linear motor slide (e.g. in cross table or for high cantilevered applications with leverage effect).

To a certain degree, the XENAX ${ }^{\circledR}$ servo controller offers the possibility to correlate the encoder position with the actual position. The correction table in WebMotion ${ }^{\circledR}$ offers 51 entries in which the physical position can be entered in fixed distances to the encoder position. The physical position can be measured with an interferometer.

The range for the way can be freely selected. Furthermore, the starting point and the distances between the entries of the table can be defined. If for example the range $0-100^{\prime} 000$ increments shall be
corrected, the starting position is Oinc and the distance for the 50 remaining table entries is $2^{\prime} 000$ inc (100 '000 / 50).

The correction values for the table are determined as follows: If the correction table is deactivated, all positions that were entered in the table are being driven to (example above: Oinc, 2‘000inc, 4‘000inc, ..., $100^{\prime} 000$ inc). At each position, the actual physical position has to be measured and entered in the correction table. When activating the correction table, all driving commands refer to the actual physical position and no longer to the encoder position of the LINAX ${ }^{\circledR}$ or ELAX ${ }^{\circledR}$ linear motor axes.

Limitations

- Correction table is not supported in case of rotary motors
- Correction table is not supported with communication over Real time Bus module (for example EtherCAT)
- This correction table runs with following commands and functions only: >G, >GP, >GW, $>$ IX, $>$ PRF, $>$ RR, $>$ RW, $>$ TP

Input the correction values with WebMotion ${ }^{\circledR}$:
With the navigation setup/reference in case of LINAX ${ }^{\circledR}$ or ELAX ${ }^{\circledR}$

Notes to correction table:

- For the positions outside of the correction table, the correction of the first respectively the last entry in the correction table holds valid. For example, the last entry is „ENC:100‘000 -> PHYSICAL 100‘017", so for the encoder position of 110×000 the physical value of 110×017 is considered.
- The position values between the table entries are interpolated.
- The correction table is saved in the application data of the XENAX ${ }^{\circledR}$ servo controller.
- After a reset of the XENAX ${ }^{\otimes}$ servo controller (command "RES"), the correction table will be initialized and deactivated (physical position = encoder position).
- During the measurement of the physical position values, the correction table has to be deactivated.

ASCII Commands

```
>CTAB O (= OFF)
>CTAB 1 (= ON)
>CTAB 3 (= INIT)
>CTPS 0 (set correction table position start)
>CTDP 10000 (set correction table distance
    points)
Setup individual correction table values
>CTPO 20000 (preselect absolute encoder
    position)
>CTVA 20003 (set correction table value with
    measured physical absolute
    position)
```


Important

The reference point is also depending on the mechanical
precision.
Hence this reference point must be always at the same
position
We look for Reference REF 2 times.

Application example for Reference:
>REF Absolute position is calculated anywhere on the linear motor stroke
>GO Go to absolute position 0
$>$ REF Absolute position is calculated next to the 0 point This is repeatable at the same position. $>G 0 \quad$ Go to absolute position 0
$\rightarrow \quad$ Now the Linear motor axis is ready

Remark: The position (WebMotion ${ }^{\circledR}$ / TP „Tell Position") is the physical absolute position The POSITION Value is blinking red/white when the correction table is in use.

Influence of Temperature on Measuring System
Besides the position deviation, which can be corrected with the correction table, the temperature influence on the measuring system has to be considered, too. The deviation due to temperature can't be corrected in the correction table and is about $8.5 \mu \mathrm{~m}$ per degree Celsius and meter for the optical measuring system. The optical measuring system
Please refer to data sheet of the according motor.

Examples:

1000 mm optical glass scale: per 1° Celsius $8.5 \mu \mathrm{~m}$ deviation 230 mm optical class scale: Per 1° Celsius $2 \mu \mathrm{~m}$ deviation

11.21 Basic Settings

General basic settings	
MODE	
Choose mode:	
Standard	0
Electronic Gear	1
Stepper Control	2
Coded Prog No (standard)	10
Coded Prog No (stepper control)	12

INC PER PULSE
Inc. pro Pulse, MODE 2, Puls/Direction controlling.

SYNC RATIO
Ratio of electronic gear
CARD IDENTIFIER
Master/Slave, CANopen, Powerlink
Read form start-up key ($2 \times$ binary coded switch) or set manual if there is no start-up key.

IP ADDRESS
Ethernet TCP/IP Adresse

SUBNET MASK
Ethernet TCP/IP Subnetmask

The settings for the force sensor are only possible with a connected Signateq ${ }^{\circledR}$ measuring amplifier. The submenu is not visible without it.

Setup with sensitivity and nominal force from the sensor data sheet as well as the desired measuring range.

SENSOR TYPE
Manufacturer specification of the connected sensor Type.

SERIAL NUMBER
Unique serial number of the connected sensor
SENSITIVITY [mV/V]
Output signal of the sensor according to manufacturer's specification

NOMINAL FORCE [N]
Nominal measuring range according to manufacturer's specification

MEASURING RANGE [N]
Calibrated measuring range of the sensor
FORCE DIRECTION
COMPRESSION = ON... +"MEAS. RANGE"
COMPR./TENSION = -"MEAS. RANGE"...+"MEAS. RANGE" TENSION = -"MEAS. RANGE" ...ON

Apply Sensor Data
Configuration is saved to the Signateq ${ }^{\circledR}$. This deletes already existing calibration values.

BANDWIDTH SIGNATEQ

Bandwidth measurement filter of the Signateq ${ }^{\circledR}$ amplifier. Default setting by "Default" button. Select high enough to achieve the desired reaction time.

Note:
The setting must be smaller than the resonance
frequency of the sensor.

FORCE OFFSET INITIAL
Initialization of the measuring range after all settings have been made and loaded "Apply Sensor Data".
11.22.1 Test Report

Commissioning and calibration by entering the correction table.

Note:
Details about this calibration method can be found in the document "Calibration Load Cell_Forceteq ${ }^{\circledR}$ pro" at /www.jennyscience.ch/en/download.

Factory calibration is displayed if the sensor has already been calibrated with the Signateq ${ }^{\circledR}$ at Jenny Science AG.
In this case the settings will be displayed here.
11.22.2 Custom Calibration

11.22.3 Factory Calibration

Overview of hardware and software versions of XENAX ${ }^{\circledR}$, bus module and SMU module.

XENAX ${ }^{\circledR}$
Overview of firmware, WebMotion ${ }^{\circledR}$, hardware and MAC-address.

BUS-MODULE
Optional bus module with version indication and protocol type.
Mac-address issue with Profinet / Powerlink and
EtherNet/IP
If the Mac-address is 0 , the Card Identifier is missing.
IP address issue with EtherNet/IP

SMU-MODULE
Optional SMU module with version indication

SIGNATEQ ${ }^{\circledR}$
Optional Signateq ${ }^{\circledR}$ measuring amplifier with version indication.

11.23 Version

11.24 Update Firmware

Loading new version of firmware and new WebMotion ${ }^{\circledR}$ to $\mathrm{XENAX}{ }^{\circledR}$ or to bus module or SMU module. The matching software components and hardware platforms can be found in the release notes.

XENAX FW Xvi75V8S
Update of firmware. After switching to the Update GUI, "FIRMWARE" can be selected in the dropdown menu. Then select the <*.mot> file by clicking on "from file" in the Explorer window. After installation and switching back to the WebMotion ${ }^{\circledR}$ interface ("Exit Update GUI") all functions are immediately available.

Recommended procedure of firmware download:

- Save application
- Disconnect PLC-connector and bus module cable if possible.
- We recommend using a point-to-point connection
from PC to XENAX ${ }^{\circledR}$, not via switch.
- After completion of firmware download reset servo controller with command "RES" (reset) in menu move axis / by command line
- Reload the application into WebMotion ${ }^{\circledR}$ and download it to servo controller.

XENAX WebMotion

Update from WebMotion ${ }^{\oplus}$. After switching to the Update GUI, you can select "WEBMOTION" in the dropdown menu. Then select the <*.mot> file by clicking on "from file" in the Explorer window. After installation and switching back to the WebMotion ${ }^{\circledR}$ interface ("Exit Update GUI") all functions are immediately available.

BUS-MODULE Firmware

Update of Busmodul Firmware (Only available if a bus module is present). Select and load file (*.flash). It is recommended to load the corresponding EDS (electronic data sheet) file into the PLC. This is contained in the folder of the firmware.

SMU-MODULE FW SMU

Update of SMU Firmware
(Only available if a SMU is present).
Select and download file Safety_Vx.xx.smu We suggest checking and testing the safety settings after a safety firmware update.

SIGNATEQ FW Signateq

Update of Signateq ${ }^{\circledR}$ measuring amplifier Firmware (only available if a Signateq ${ }^{\circledR}$ is present). Select and download file FW_Signateq_Vx.xx.stq. After the update, restart the controller and then read out the force applied to the sensor using the "TF" (Tell Force) command to check that the value changes.

Note:

Alternatively, the JSC Ethernet Installer can be used to update each Firmware on several XENAX ${ }^{\circledR}$ Servo controllers simultaneously.

11.25 Save

Saves applications, which contain all from the client saved parameters, data and programs.
to XENAX
saves applications from WebMotion ${ }^{\circledR}$ to XENAX ${ }^{\circledR}$.
to file
saves applications from WebMotion ${ }^{\circledR}$ to a file on PC/Laptop (Harddisk, Server).
to start-up key
Saves applications in the start-up key to load faster
on other XENAX ${ }^{\circledR}$. If "with Ethernet settings" is checked, the Ethernet settings are also saved on the

Start-up Key and thus copied to another servo controller when loading.

Opens applications, which contain all from the client saved parameters, data and programs.
from file
loads an existing application from a file to WebMotion ${ }^{\circledR}$. Data will be stored into XENAX ${ }^{\circledR}$.

11.26 Open

12 Master / Slave

With the master/slave configuration you can control up to 4 axes with one central program

Typical applications are handlings modules (pick\&place).

The master controls his slave's autonomously in stand-alone operation and can directly be controlled by a superior system over simple I/O signals.
12.1 Master/Slave Configuration

Master and slave devices are absolute identical standard XENAX ${ }^{\circledR}$ servo controllers.

The $I^{2} \mathrm{C}$ bus is interconnected via short standard USB patch cables. Both plugs (USB-A) are usable.

No difference between input and output.

The parameter Cl (Card Identifier) must be set on the involved devices as follows:

Device	Cl	Remote ID	
Master	0	LOC (local)	programs
Slave 1	1	REM ID1	-
Slave 2	2	REM ID2	-
Slave 3	3	REM ID3	-

Important:

The program is running on the master servo controller.
On the slaves servo controller must be no programs loaded.

The start-up key functionality is disabled in master/slave configuration and must be disconnected

12.2 Programming example Pick\&Place

Please note:

All indices and profiles have to be defined exclusively in the master device. After turning on the devices, indices and profiles will be automatically transferred to the slaves.
e program interpreter is triggered in 1 ms intervals. The transmission of a command from the master to the slave takes an additional 0.45 ms .

The measurement of time critical sequences is possible with the process timer functionality and the commands: "TIMER_START" und "TIMER_STOP". The process time can be read with the command TPT (Tell

Process Timer).

12.3 Timing Master / Slave

13 Gantry Synchronized Mode

In the gantry mode there are two linear motor axes mounted with the same driving direction. Those two axes have to move synchronously. In this example these are the y-axes marked with the arrows.

When switching on the system, these two Y -axes have to be aligned in order to move without mechanical tension.

The alignment is automatically completed with the function "REFERENCE". For "REFERENCE" function for gantry systems you will need the following information:

The arrangement of the two linear motor axes
Is driving direction from the mechanical absolute zero point the same for both axes or in opposite direction

In which direction should the reference be completed (parameter DRHR)

The axis with which will be communicated by ASCII commands is the master. The slave has to be connected to the master via A-A cable.

The slave has to be assigned a CARD IDENTIFIER between 1 and 3 . This can be done by WebMotion ${ }^{\circledR}$ under "setup / basic / CARD IDENTIFIER" or with ASCII command

$$
\mathrm{Cl} x \text { (where } \mathrm{x}=1-3 \text {). }
$$

The card identifier (CI) can also be assigned with a start-up key and an address from 1 to 3 . When turning on the logic supply the next time, this Cl number of the start-up key is set.
The master has to be assigned to the number 0 or a different Card identifier (CI) than its slave.

XENAX	Parameter	Description
SLAVE	CI	Card Identifier
MASTER	DRHR	Direction of reference drive and arrangement LINAX ${ }^{\circledR} /$ ELAX $^{\circledR}$ linear motor axes.
MASTER	GSID	Gantry Slave ID corresponds to CI Slave

13.1 Activate Gantry Mode

Settings WebMotion ${ }^{\circledR}$
(settings only necessary on the XENAX ${ }^{\circledR}$ Master)

The gantry mode is activated with these settings.

By selecting the "Gantry Offset Parameter", you can specify whether the position offset between the master and slave should be set automatically or manually.
If you set the "User Defined Master/Slave Offset" option to OFF, the offset is determined during
referencing and its value becomes visible. If you select the "User Defined" setting, you can set the offset manually to correct the rectangularity of the gantry setup. This change is made directly in the slave and the rectangularity can then be checked using a dial gauge.

Command	Description
REF	Reference
GP $/ \mathrm{G}$	Go Position / Go direct Position
GW	Go Way
IX	Index
PRF	Start profile No. xx
PG	Program
EE *	Emergency Exit
EE1 *	Emergency Exit 1
SM	Stop Motion

* EE and EE1 must only be parameterized in a Gantry Master

13.3 HW Limit-Switch in Gantry-Setup

14 Forceteq ${ }^{\circledR}$ Force Measurement Technology

14.1 Forceteq ${ }^{\circledR}$ basic current based with self calibrated motor

The Forceteq ${ }^{\circledR}$ basic measurement technology is completely integrated in the XENAX ${ }^{\circledR}$ Xvi servo controller. This allows force-monitored control of all Jenny Science linear and rotary motor axes. The force is measured during the production process using the patented Forceteq ${ }^{\circledR}$ measurement technology, no external load cell is required. This allows you to acquire and record qualityrelevant force-distance diagrams for all movements. Assembly operations can be monitored "in-process". Errors and discrepancies are detected immediately. This means better quality and higher throughput. Additional checking stations are no longer necessary.

- For Standalone Operation
- Up to 10 force sectors programm able with WebMotion ${ }^{\circledR}$

The individual axis types have different resolution and accuracy of the force and the measurable minimally measurable force.

Linear-Motor	Force Constant	Minimally Measurable Force	Resolution
LINAX ${ }^{\text {® }}$ Lxc F08	$1 \mathrm{~N} \sim 32$ * 10 mA	0.5 N	0.25 N
LINAX ${ }^{\text {® }}$ Lxc F10	1 N ~ 28 * 10 mA	0.5 N	0.25 N
ELAX ${ }^{\circledR}$ Ex F20	$1 \mathrm{~N} \sim 12$ * 10 mA	0.5 N	0.25 N
LINAX ${ }^{\text {® }}$ Lxc F40	$1 \mathrm{~N} \sim 11$ * 10 mA	1.0 N	0.5 N
LINAX ${ }^{\text {® }}$ Lxu / Lxs F60	$1 \mathrm{~N} \sim 10$ * 10 mA	10.0 N	5.0 N
Rotativ-Motor	Torque Constant	Minimally Measurable Torque	Resolution
ROTAX® Rxhq 110-50T1.5	$10 \mathrm{mNm} \sim 2.5 * 10 \mathrm{~mA}$	60 mNm	30 mNm
ROTAX ${ }^{\text {® }}$ Rxhq 50-12T0.3	$10 \mathrm{mNm} \sim 8$ * 10 mA	20 mNm	10 mNm
ROTAX ${ }^{\text {® }}$ Rxvp 28-6T0.04	$10 \mathrm{mNm} \sim 23 * 10 \mathrm{~mA}$	6 mNm	3 mNm

14.2 Forceteq ${ }^{\circledR}$ pro precise with Signateq ${ }^{\circledR}$ and external load cell

With the new developed Signateq ${ }^{\circledR}$ measuring amplifier, a standard strain gauge load cell can be connected directly to the XENAX ${ }^{\circledR}$ Xvi 75 V 8 S servo controller. By using a load cell, the measurement and control adjustment of Forceteq ${ }^{\circledR}$ measurement technology becomes much more precise.
Due to the two-stage measuring amplifier, the signal noise is reduced and sensors with low sensitivity can be used with no problems.

Signateq ${ }^{\circledR}$ Measuring Amplifier

Length	78 mm
Width	27.5 mm
Height	12 mm

Sampling rate of load cell	$2 \mu \mathrm{~s}$
Transmission rate of average values	$100 \mu \mathrm{~s}$
Bandwidth Signateq ${ }^{\circledR}$ (Amplifier)	100 Hz up to 5 kHz
Range of sensitivity ${ }^{*}$)	$0.1 \mathrm{mV} / \mathrm{V}$ up to $4.6 \mathrm{mV} / \mathrm{V}$
Calculate resolution of force	Max Force of Sensor $/ 3732$

*) If the sensitivity is higher than $4.6 \mathrm{mV} / \mathrm{V}$ the measuring range is limited upwards.

Example: Load cell type 8432 from Burster with overload protection.

Specific linearity variation	$0,15 \%$
Measuring range	$0 \ldots 2,5 \mathrm{~N}$ to $0 \ldots 100 \mathrm{kN}$

Resolution of force

Art. No. Burster	Measuring range	Sensitivity	Resolution of force
$8432-5005$	$0-5 \mathrm{~N}$	$0.75 \mathrm{mV} / \mathrm{V}$	$1.3 \mathrm{mN} / 0.13 \mathrm{gf}$
$8432-5010$	$0-10 \mathrm{~N}$	$1.5 \mathrm{mV} / \mathrm{V}$	$2.7 \mathrm{mN} / 0.28 \mathrm{gf}$
$8432-5020$	$0-20 \mathrm{~N}$	$2.0 \mathrm{mV} / \mathrm{V}$	$5.4 \mathrm{mN} / 0.55 \mathrm{gf}$
$8432-5050$	$0-50 \mathrm{~N}$	$2.0 \mathrm{mV} / \mathrm{V}$	$13.4 \mathrm{mN} / 1.37 \mathrm{gf}$
$8432-5100$	$0-100 \mathrm{~N}$	$2.0 \mathrm{mV} / \mathrm{V}$	$26.8 \mathrm{mN} / 2.73 \mathrm{gf}$
$8432-5200$	$0-200 \mathrm{~N}$	$2.0 \mathrm{mV} / \mathrm{V}$	$53.6 \mathrm{mN} / 5.47 \mathrm{gf}$

Specifications of the available linear motor axes

Linear motor type Measuring system	Max. Force	Max. driving distance [mm]	Forceteq basic resolution	Forceteq pro resolution / range.
LINAX ${ }^{\circledR}$ Lxc F08, $1 \mu \mathrm{~m} / 100 \mathrm{~nm}$ opt.	24 N	44*	0.25 N	5.4 mN , with max. 20 N
LINAX ${ }^{\circledR}$ Lxc F10, $1 \mu \mathrm{~m} / 100 \mathrm{~nm}$ opt.	30N	85*, 135, 230	0.25 N	5.4 mN , with max. 20 N
ELAX ${ }^{\circledR}$ Ex F20, $1 \mu \mathrm{~m}$ magn.	60N	$\begin{gathered} 30^{*}, 50^{*}, 80^{*} \\ 110^{*}, 150 \end{gathered}$	0.25 N	13.4 mN , with max. 50 N
LINAX ${ }^{\circledR}$ Lxc F40, $1 \mu \mathrm{~m} / 100 \mathrm{~nm}$ opt.	112N	80*, 176*, 272	0.5 N	26.8 mN, with max. 100N
LINAX ${ }^{\circledR}$ Lxu F60, $1 \mu \mathrm{~m}$ magn./100nm opt.	180N	$\begin{gathered} 40^{*}, 80^{*}, 160^{*} \\ 240^{*}, 320 \end{gathered}$	5.0 N	53.6 mN, with max. 180N
LINAX ${ }^{\circledR}$ Lxs F60, $1 \mu \mathrm{~m}$ magn./100nm opt.	180N	160 up to 1600	5.0 N	53.6 mN, with max. 180N

* Available with weight compensation for vertical installation, can reduce the force resolution of Forceteq ${ }^{\circledR}$ basic

14.3 Forceteq ${ }^{\circledR}$ basic via Realtime Bus

The force values are transmitted as process data objects (PDO) cyclically according to the bus cycle time
14.3.1 CANopen over Ethernet

Parameter	Objekt (PDO)	Description
Position Actual $[\mathrm{Inc}]$	6064 h	Position actual
I_Force Actual $[\mathrm{mA}]$	2005 h	Force-equivalent current actual
Limit I_Force $[\mathrm{x} 10 \mathrm{~mA}]$	6073 h	Limitation of force-equivalent current
Process Status Register	2006 h Bit 15	Limitation of force-equivalent current

14.3.2 Ethernet/IP

Parameter	Class	Instanz	Id	Description
PositionActual $[\mathrm{Inc}]$	0×66	0×1	0×24	Position actual
IForceActual $[\mathrm{mA}]$	0×64	0×1	0×5	Force-equivalent current actual
LimitlForce $[\times 10 \mathrm{~mA}]$	0×66	0×1	0×33	Limitation of force-equivalent current
ProcessStatusRegister	0×64	0×1	0×6 Bit15	Limitation of force-equivalent current reached

14.3.3 Profinet

Parameter	PROFIdrive Telegram 9	I/O Data Number	Description
XIST_A [Inc]	Standard	4\&5	Position actual
I_Force Actual [mA]	Supplementary Data 4 Data 5	$\begin{aligned} & 2 \& 3 \\ & 1 \& 2 \end{aligned}$	Force-equivalent current actual
Limit I_Force [x10mA]	Supplementary Data 4 Data 5	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Limitation of force-equivalent current
Process Status Register	Supplementary Data 4 Data 5	6\&7 Bit 15 5\&6 Bit 15	Limitation of force-equivalent current reached

14.4 Forceteq ${ }^{\circledR}$ basic via XENAX ${ }^{\circledR}$

14.4.1 I_Force Calibration

14.4.2 I_Force Limitation

The current value „I_Force" is proportional to the force. Following graph shows corresponding relations for the different linear motor types.

A compression die should apply no more than 4 N
force on an object.
Force Limitation with „LIMIT I-FORCE"
e.g.. LAX $^{\circledR}$ force constant: $12 \times 10 \mathrm{~mA} \sim 1 \mathrm{~N}$
$48 \times 10 \mathrm{~mA} \sim 4 \mathrm{~N}$

14.4.3 I_Force Monitoring

14.4.3.1 Diagram I_Force

14.4.3.2 Sector I_Force

Force Specification Examples:

1) Force curve has to pass through sector from the left/bottom side to right/top side.
2) Force curve has to pass through sector from the bottom to the top side.
3) Force curve has to reach the sector and can pass through incoming and exiting force boundaries multiple times.

1

2

3

Note:
If there are defined incoming and exiting force boundaries, it is absolutely necessary that the force curve passes through them. If there are no incoming
force boundaries defined, the force curve has to begin somewhere within the force sector. If there are no exiting force boundaries defined, the force curve has to end within the force sector.

14.4.4 I Force Control

14.4.4.1 Program with I_Force Control Commands

In the WebMotion ${ }^{\circledR}$ menu „program" the different force functions of I_FORCE CALIBRATION, I_FORCE LIMITATION and I_FORCE MONITORING can be combined and defined with the use of the according commands.
The command can be found in chapter 11.14.1 Program commands

DRIVE I_FORCE is driving with force consisting of acceleration (ACC), speed (SPEED), current (I_FORCE) and driving direction (DIRECTION).

After defining and saving the above mentioned parameters, DRIVE I_FORCE can be included in a program.

14.4.4.2 Drive I_Force

Up to 10 DRIVE I_FORCE can be defined.

14.4.5 Sector Offset for Touching Position

Typically an object is first touched. All following functions then relate to this touching position. Depending on the size tolerance of the objects, this touching position differs from object to object.

The touching position can very simply be detected with „Drive I_Force" (by using little force). The command "TPSO" (Take IST-Position as Sector Offset) will take this touching position as sector offset for all functions that follow.

In order to determine the value „Sector I_Force Start" and „Sector I_Force End" it is simplest to record the force curve and to calculate the distance to touching position (absolute position - Sector Offset).
"Sector I_Force Start", "Sector I_Force End", "Wait for Distance greater/less" and "Jump if Distance greater/less" are distances relative to the touching position (sector offset).

With „SSO" Set Sector Offset $=0$ the distances correspond to the absolute positions.

14.4.6 Application Example

A force sensor consisting of a little mounting plate, ceramic and strain gauge elements glued on the top shall be tested upon its functionality.

The force sensor measures the external force applied to the small ball (upper left corner in picture).

With the ELAX® linear motor slide and the XENAX® servo controller the ball shall be touched and the touching position detected. The touching position is the offset of the actual force curve measurement. This offset compensates the height tolerances of the different measuring objects.

After touching position, the force curve of the ceramic plate shall be recorded. After an air gap of only $200 \mu \mathrm{~m}$, the ceramic plate hits the rubber buffer. At this position the force increases steeper as the rubber buffer acts against the ceramic plate. The maximal force is limited to approximately $12 \mathrm{~N} \sim 150 \times 10 \mathrm{~mA}$. Of interest is the increase in force while the plate is bending and the position where the force curve is making a kink upwards when hitting the rubber buffer. For this example, five different sectors are defined on the force-/way curve, which have to be passed correctly.

Hereinafter you can find the according program example 1) as stand-alone version programmed and stored in the XENAX ${ }^{\circledR}$ servo controller 2) as Ascii command set controlled via a superior controller.

Ball

14.4.6.1 Application as program in XENAX ${ }^{\circledR}$

Input / Output Interface Definition

INPUT FUNCTIONS:
Input $1=$
Input 2 = Program 2, Force Calibration of ELAX ${ }^{\circledR}$ linear motor slide
Input 3 = Program 3, Entire test process including analysis

OUTPUT „STATUS":
Output $1=$ No touching position found \rightarrow No test object available
Output 2 = Error of test object
Output 5 = Test object OK

INDEX, DRIVE I_FORCE ind SECTORS

Drive with Force, Force on 0.5 N in order to recognize touching
position.
($1 \mathrm{~N}=12 \times 10 \mathrm{~mA}$)
******* Index 1 ******
Acc $\times 1000=1000$
Speed = 100000
Dist =0
AbsRel = 1
******* Index $2^{* * * * * *}$
Acc $\times 1000=1000$
Speed = 100000
Dist $=30000$
AbsRel =1
******* Drive I Force 1
Acc $\times 1000=100$
Speed =5000
Force $\times 10 \mathrm{~mA}=6$

Direction =0

In order to determine the following sector parameters, we recommend the following approach: 1. Drive towards test object (Drive I_Force) with little force (e.g. $0.5-1.0 \mathrm{~N}$) and remember the touching position (offset corresponds to the position at arrowhead)
2. Record Force/Way diagram of a correct test object. Then place the testing sectors according to the force curve and retrieve parameters. For Sector I_Force Start/End the offset has to be subtracted of the touching position.

******* Sector I Force 1
Sector Force Start = 31
Sector IForce End = 58
Force Low x10mA $=25$
IForce High x10mA = 35
Sector Transit Config $=12480$
*******Sector I_Force 2 ***************
Sector Force Start = 100
Sector Force End $=130$
Force Low x10mA = 65
IForce High x10mA $=75$
Sector Transit Config = 12480

No „EXIT" Ending position has to be in sector.

Referencing and driving to position 0, INDEX 1

Calibration of linear motor slide by recording all forces (cogging, friction, weight etc.)

Entire testing process with analysis of result

Reset output status display

Initializing sector offset to 0 (not mandatory) Selected sectors 0 (not mandatory)

Drive to position 0 , all the way to the top Drive to position 30000, fast driving to pre-position

Drive to touching position with little force (0.5 N) Short wait time, in case the force has been exceeded while accelerating (when using little forces). Wait until LIMIT I_FORCE is reached. If there is no touching position during timeout frame, jump to error
"no object in place", output 1 ON
Short wait time in order to stabilize touching position Takes touching position as offset for the following tests Selecting sectors 1-5

Change I_FORCE forcurrent Drive I_Force from, 6 to $150=$ 12.5 N

Timeout in case that force is not reached, then no output no 5 . Short wait time after force reaches limit to "stabilize".

Drive I_Force ends

Testing the selected sectors, in case of an error, jump to error output 5 ON, meaning testing object OK
******* Sector I Force 3
Sector IForce Start $=158$
Sector IForce End =178
IForce Low $\times 10 \mathrm{~mA}=119$
IForce High x10mA = 121
Sector Transit Config $=8320$
******* Sector I_Force 4 ****************
Sector IForce Start = 162
Sector IForce End $=182$
IForce Low x10mA $=139$
IForce High $\times 10 \mathrm{~mA}=141$
Sector Transit Config $=8320$
******* Sector I_Force $5^{* * * * * * * * * * * * * * * ~}$
Sector IForce Start $=170$
Sector IForce End = 185
IForce Low x10mA $=148$
IForce High x10mA = 152
Sector Transit Config $=12288$

Line 11 WAIT TIME TIME [ms] $=20$
Line 12 TAKE POS AS SECTOR OFFSET
Line 13 SELECT SECTORS 11111
Line 14 CHANGE LIMIT I_FORCE I_FORCE $=150$
Line 15 WAIT LIMIT I_FORCE TIMEOUT $=2000 \mathrm{~ms}$ LINE $=26$
Line 16 WAIT TIME TIME [ms] $=20$
Line 17 DRIVE I_FORCE END
Line 18 JUMP IFI_FORCE SECT FAULT LINE $=25$
Line 19 SET OUTPUT $5 \mathrm{M} /$ SLAVE DEVICE $=$ LOCAL
Line 20 SELECT SECTORS 0
Line 21 INDEX 1 LOCAL COMPLETION $=100 \%$
Line 22 PROGRAM END

Line 23 SET OUTPUT 1 M/SLAVE DEVICE = LOCAL
Line 24 GOTO LINE 26
Line 25 SET OUTPUT $2 \mathrm{M} /$ SLAVE DEVICE $=$ LOCAL
Line 26 DRIVE I_FORCE END
Line 27 INDEX 1 = LOCAL COMPLETION $=100 \%$

Download the determined sector parameters into XENAX ${ }^{\circledR}$ servo controller. There are 5 sectors all in all.

Below you find the description for sector 1. Sectors 25 are structured in the same way.

Pre-selection of sector number Sector I_Force Start [Inc] Sector I_Force End [Inc] IFL I_Force Low [x10mA] IFLI_Force High [x10mA]
Sector Transition Configuration
In ordert o be able to see those parameters in the webbrowser under "sector i_force", the site has to be re-loaded. This is how the values are transferred from the XENAX ${ }^{\circledR}$ to the Webbrowser.

Calculate STC parameter with Win Calc (view of programmer)

Decimal value can be negative if highest Bit, Entry 4 is
set.

Bit 15..12	$11 . .8$	$7 . .4$	$3 . .0$
Entry	not used	Exit	not used
4321	0	4321	0
0011	0000	1100	0000

Program

Referencing Axis Drive to position 0

Delete old calibration values (optional)
Remove test objects, axis has to drive without obstacles Execute Force Calibration from 0 until 50000 Inc (one-time) Force Calibration test, if slider is floating / in balance (optional) Back to position control (optional)

Sector Offset is set to 0 (optional) Selection of active sectors of 0 . Only to be activated before test drive, so the analysis SIFF is correct. Drive to position 30‘000 Inc

Reduce Deviation Position, so the internal calculated desired position does not deviate too much from the actual position of Drive I_Force.

Otherwise, the slide would jump in position when _Force is increased. Only needed when there are long timeouts after Drive I_Force is reached.

Drive I_Force 1 moves to touching position Take Position as Sector Offset (touching position)

Activate sectors 1-5
Change Limit I_FORCE to $150 \times 10 \mathrm{~mA}$
Verify tell process status registery, Bit 5 „IN FORCE"

Stop Drive I_Force with Stop Motion Shows faulting sectors. Response should be 0 Reset Deviation Position to old value Drive to position 0

Parameter Sector 1 laden
>NSEC 1
>SIFS 31
>SIFE 58
>IFL 25
$>$ IFH 35
>STC 12480

$>$ REF
>G 0
>FC 0
PFC 50000
>FCT1
>FCTO
>SSO 0
>SSEC 0
>G 30000

DP100

14.5 Forceteq ${ }^{\circledR}$ pro via Realtime Bus

The force values are transmitted as process data objects (PDO) cyclically according to the bus cycle time
14.5.1 CANopen over Ethernet

Parameter	Objekt (PDO)	Description
Position Actual $[\mathrm{nc}]$	6064 h	Position actual
Force Actual $[\mathrm{mN}]$	200 Ah	Force actual
Limit Force $[\mathrm{mN}]$	2009 h	Limitation of force
Process Status Register	2006 h Bit 27	Limitation of force reached

14.5.2 Ethernet/IP

Parameter	Class	Instanz	Id	Description
PositionActual $[\mathrm{Inc}]$	0×66	0×1	0×24	Position actual
ForceActual $[\mathrm{mN}]$	0×64	0×1	$0 \times A$	Force actual
LimitForce $[\mathrm{mN}]$	0×64	0×1	0×9	Limitation of force
ProcessStatusRegister	0×64	0×1	0×6 Bit27	Limitation of force reached

14.5.3 Profinet

Parameter	PROFIdrive Telegram 9	I/O Data Number	Description
Position Actual [Inc]	Standard	$4 \& 5$	Position actual
Force Actual [mN]	Supplementary		
	Data 4	$4 \& 5$	Force actual
	Data 5	$3 \& 4$	
	Supplementary		
Process Status Register	Data 4	$2 \& 3$	Limitation of force
	Data 5	$2 \& 3$	
	Supplementary		
	Data 4	$6 \& 7$ Bit 27	Limitation of force reached

14.6 Forceteq ${ }^{\circledR}$ pro via XENAX ${ }^{\circledR}$

14.6.1 I_Force Calibration

14.6.2 Controller Settings

14.6.3 Force Limitation

14.6.4 Force Monitoring

14.6.4.1 Diagram Force

14.6.4.2 Sector Force

1

2

3

Note:
If there are defined incoming and exiting force boundaries, it is absolutely necessary that the force curve passes through them. If there are no incoming
force boundaries defined, the force curve has to begin somewhere within the force sector. If there are no exiting force boundaries defined, the force curve has to end within the force sector.

14.6.5 Force Control

14.6.5.1 Program with Force Control Commands

14.6.5.2 Drive Force

After defining and saving the above mentioned parameters, DRIVE FORCE can be included in a program.

Up to 10 DRIVE FORCE can be defined.

Typically, an object is first touched. All following functions then relate to this touching position. Depending on the size tolerance of the objects, this touching position differs from object to object.

The touching position can very simply be detected with "Drive Force" (by using little force). The command "TPSO" (Take IST-Position as Sector Offset) will take this touching position as sector offset for all functions that follow.

In order to determine the value "Sector Force Start" and „Sector Force End" it is simplest to record the force curve and to calculate the distance to touching position (absolute position - Sector Offset).
"Sector Force Start", "Sector Force End", "Wait for Distance greater/less" and "Jump if Distance greater/less" are distances relative to the touching position (sector offset).

With „SSO" Set Sector Offset $=0$ the distances correspond to the absolute positions.

15 Parameterization rotative third-party motor

The servo controller XENAX ${ }^{\circledR}$ Xvi75V8 allows motion control for rotative AC / DC / EC servomotors. With brush-type DC servomotors an incremental encoder is necessary. With brushless AC / EC servomotors 3 phase commutation signals (hall) and an incremental encoder are necessary.

The motor configuration must be set to "Thirdparty" via DIP switch. (For details, see chapter "Fehler! Verweisquelle konnte nicht gefunden werden. Fehler! Verweisquelle konnte nicht gefunden werden.")

As the customer, you can do the commissioning yourself with the help of this guide. Alternatively, Jenny Science AG offers this as a service. You will receive a compatible cable for your motor and the necessary parameterization. To take advantage of this service, please send us the motor.

Necessary parameters from datasheet

Motor parameters	Unit	Scale	Command
Nominal current (for calc. ${ }^{12} \mathrm{~T}$ only)	[A]	*10 ${ }^{2}$	IN
Torque current	[A]	*102	IP
Number of pole pairs	[1]	-	POL
Encoder resolution (Edge $=$ *4)	[1]	-	ENC
Phase direction	[1]	-	PHD
Phase offset	[${ }^{\circ}$]	-	PHO
Rotor moment of inertia	[$\mathrm{Kg}^{*} \mathrm{~m}^{2}$]	*109	MAMO
Torque constant	[Nm / A]	*10 ${ }^{6}$	FCM
Phase - phase inductance	$[\mu \mathrm{H}]$	-	LPH
Phase - phase resistance	[m Ω]	-	RPH

15.1 Motorparameter with WebMotion

Set motor type in setup / motor to "NOT IN THE PARAMETER TABLE" if it is not already in the list.

The motor parameterization can be done in menu move axis / by command line or setup / motor.

Parameter of friction (Default)

The default settings can be adopted unchanged.

Friction	Unit	Scale	Command	Default
Dynamical	$[\mathrm{mN} / \mathrm{m} / \mathrm{s}]$	-	FFDY	10 © 000
Static	$[\mathrm{mN}]$	-	FFST	0

Example Faulhaber Motor 4490 H 024B

Motor parameter	Datasheet	XENAX ${ }^{\text {® }}$ conversion	Command Terminal
Nominal current	Thermic acceptable continuous8.62 A current	$8.62 \mathrm{~A} * 10^{2}$	IN862
Torque current	12A (selected) Depends on the application. Limit for acceleration and deceleration, temporary active.	$12 \mathrm{~A} * 10^{2}$	IP1200
Number of pole pairs	1 For brush-type DC motor, set value to 0	1	POL1
Encoder resolution (Edge = *4)	4000 INC/REV One revolution clockwise of motor shaft will increment position counter by 4000Inc positive.	4000	ENC4000
Phase direction	By enter PHDD in by command line/terminal and then turn the motor clockwise, it gets 0 or 1 as response. With V3.46 or higher. If you receive «?» the DIP-Switch is still set to JSC-Motor or the HallSignals are not available.	1	PHD1
Phase offset	Fort the most products set 0 o Harmonic Drive: 3300^{-}	0	PHOO
Rotor moment of inertia	$130 \mathrm{gcm}^{2}$	$0,000013 \mathrm{kgm}^{2 *} 10^{9}=13^{\prime} 000$	MAMO13000
Torque constant	23,83 mNm/A	$0,02383 \mathrm{Nm} / \mathrm{A} * 10^{6}=23 \times 830$	FCM23830
Phase - phase inductance	$76 \mu \mathrm{H}$	$76 \mu \mathrm{H}$	LPH76
Phase - phase resistance	0.237Ω	$237 \mathrm{~m} \Omega$	RPH237

After parameterization, the servo controller needs to be rebooted and the WebMotion ${ }^{\circledR}$ browser has to be refreshed.

Afterwards, the motor can be controlled under:
Move axis.
The motor parameters are an integral part of the application data and can be saved with the "save" button on the bottom of the WebMotion ${ }^{\circledR}$ interface.

15.2 External load for state controller

Moment of inertia	Unit	Scale	Command
Inertia	$\left[\mathrm{Kg}^{*} \mathrm{~m}^{2}\right]$	${ }^{*} 10^{9}$	ML

If a gearbox is placed between the motor and the load, the external moment of inertia must be must be converted to the motor shaft accordingly.

The transmission ratio must be squared
must be weighted. For example, gear ratio $=20: 1$. The external moment of inertia must be reduced by 400.

Oscillations and overshoot can be optimised in the setup / state controller menu during operation using the following parameters:

Bandwidth of position controller
GAIN POS Increasing: closed loop stronger, weightend on position.
Decreasing: closed loop smoother, weightend on velocity.

15.3 Template parametersset for documentation

Typ:

Motor parameter

Parameter	Value Datasheet	Unit	Scale	Command	Value to enter setup->motor
Nominal current		[A]	*10 ${ }^{2}$	IN	
Torque current		[A]	*10 ${ }^{2}$	IP	
Number of pole pairs		[1]	-	POL	
Increments / Revolution		[1]	-	ENC	
Phase direction		[1]	-	PHD	
Phase offset		[${ }^{\circ}$]	-	PHO	
Rotor moment of inertia scaled		$\left[\mathrm{Kg}^{*}{ }^{2}\right]$	* 10^{9}	MAMO	
Torque constanta scaled		[Nm / A]	*10 ${ }^{6}$	FCM	
Phase - phase inductance		$[\mu \mathrm{H}]$	-	LPH	
Phase - phase resistance		[m Ω]	-	RPH	

State controller parameter

Parameter	Unit	Command	Default	Value to enter
Moment of inertia load scaled (INERTIA)	$\left[\mathrm{Kg}^{*} \mathrm{~m}^{2}\right]$	ML	0	
Bandwidth of position controller (GAIN POS)	$[\mathrm{Hz}]$	BWP	50	
Bandwidth of current controller (GAIN CUR)	$[\mathrm{Hz}]$	BWC	300	
Dynamic friction	$[\mathrm{mN} / \mathrm{m} / \mathrm{s}]$	FFDY	$10^{\prime} 000$	
Static friction	$[\mathrm{mN}]$	FFST	0	

16 Operating Status on 7-Segment Display

Description	Display
No firmware, operating	
system is active	F
Firmware active, servo controller OFF	0
Servo On, control loop closed	1
Error refer chapter 17	xx flashing
No power supply logic or voltage on power supply logic >27VDC	none

17 Error Handling

Errors are displayed on the XENAX ${ }^{\circledR}$ servo controller's 7 -segment display by flashing a two digit number. With the command „TE" (Tell Error) they can be retrieved.

There are 3 different categories to differentiate:

| Information No 0-39 | They do not change state of the servo controller. These are
 simple status indicators. |
| :---: | :---: | :--- |
| Warnings No 40-49 | They can trigger a stop of an active drive (e.g. driving in soft
 limit). However, the drive can then be continued without the |
| need to switch off the output stage. | |

The first information/warning/error is always displayed first. A possible follow-up error won't be displayed. Each warning can overwrite information and each error can overwrite a warning or information. The error history can be retrieved with ASCII command „TEB".

17.1 Error Codes

Limit Force reached	The force from the external force sensor on the Signateq ${ }^{\circledR}$ measuring amplifier has reached "Limit Force Value" (LF). Motor current is limited. A possible error "50" (position deviation too large) is suppressed.
I_Force Drift Compensation failed	Automatic I_Force Drift Compensation drive was blocked or the compensation position could not be held steady for 150 ms (e.g., due to vibration)
Automatic detection of force direction not possible in standstill	Automatic detection of the direction of force (SQFD $=0$) is only possible when the axis is moving. Start motion into the force sensor or switch off automatic detection (set SQFD to 1 or 2). Detection is performed during the first drive into the force sensor after a power-up.
Gantry Master Salve Offset	Difference between automatically measured Gantry Master Slave Offset and pre-set value through PGMSO greater than 0.5 mm
	Warnings
Driveway limitation due to soft limit values	Soft limits can be adjusted in WebMotion ${ }^{\circledR}$ in menu „move axis / by click".
HW-Limit switch positive/negative active	HW-Limit switches are defined as input function "LIMIT SWITCH NEGATIVE" / "LIMIT SWITCH POSITIVE"
Remote Controller Command rejected	One of the slave axes has an error or command for the slave could not be executed
Remote Controller not recognized	Master Slave configuration: Not all remote controllers defined in the master were recognized. The programs in the master have to be checked and the invalid remote controllers (Rem ID) have to be deleted.
Remote controller communication error AD Offset Error Cyclic data are not valid	Check Master/Slave cable
	The AD-Offset for measuring the current could not be retrieved correctly during the first drive. The linear motor has to be turned off while the output stage is turned on for at least 0.5 s , so the AD-Offset can be retrieved correctly.
	Cyclic data specified via the bus modules are not valid.
	Check the Data S-Curve, Deviation position, Deviation Target position, I
	Force Max, Speed and Acceleration. Or PDO cycle time it not correct (only a multiple of 100 us is valid).
Drive interrupted through SMU	The current drive was interrupted through the functional safety SS2 or SLS.
	Errors
Position deviation is too large.	The difference between the internal calculated position and the present motor position (encoder) is larger than the value defined as DP (deviation position) in Closed Loop setup. Refer to chapter 17.2 Notes for Error 50
The connected axis is not supported by this Servo Controller	The Servo Controller type you are using is not intended for the connected axis. Please use a compatible Servo Controller.
Virtual multiturn position deviation exceeded tolerance	Since the last time the logic supply was switched off, the ROTAX ${ }^{\circledR}$ has moved above the permissible tolerance of the Virtual Multiturn.
Excessive rise of temperature or weak signal of LINAX ${ }^{\circledR}$ read head or Measuring	Temperature rise too high/fast or the signal in the detector head of the measuring system is too weak.
system error of ROTAX ${ }^{\circledR}$	Check your drive profile or clean glass scale on LINAX ${ }^{\circledR}$ linear motor. To ensure a correct start-up of the measuring system, the logic supply must be switched off for >10 s when restarting.
Excessive rise of temperature	Temperature rise too high/fast.
	Check our drive profile.
Communication interruption Signateq ${ }^{\text {® }}$	No Signateq ${ }^{\circledR}$ measuring amplifier is connected and a force-limited (Limit_Force) drive is started or there is a connection failure to the Signateq ${ }^{\circledR}$ measuring amplifier.
JSC Motor does not fit application data	Connected JSC motor does not fit to the motor stored in application data (e.g. if a new JSC motor type is connected to the servo controller). Motor type reset (RESM) is required.

Over-temperature power stage
Overvoltage of power supply
Ballast circuit too long active
Over-temperature LINAX ${ }^{\circledR} /$ ELAX $^{\circledR} /$ ROTAX $^{\circledR}$
Under voltage of power supply
Field adjustment on the magnet poles

Z-Mark distance failure
Velocity too high during REF

Error HALL signal
Over-current power stage
Power stage disabled
Speed is too high

Over-temperature ($I^{2} \mathrm{~T}$)
Electrical Angle Failure

Reference pending Gantry Master Salve Offset
communication error bus module/serial port

MAC-address not valid
Wrong checksum of calibration data

Over-current PLC Output

Communication error $I^{2} \mathrm{C}$ bus to the motor

Internal FRAM error

Above 85° detected by separate temperature sensor on power stage. Power stage will be switched off.
Power supply voltage or retarding energy from motor too high. Error occurs only if power stage is turned off. If power stage is turned on, please refer to error code 62.
The ballast circuit is still more than 5 sec continuously active: Retarding energy too high or the power supply voltage is too high, the power stage will be switched off.
Coil temperature above 80° in LINAX ${ }^{\circledR}$ / ELAX ${ }^{\circledR}$ linear motor or ROTAX ${ }^{\circledR}$ rotative axis. Power stage will be switched off.
Motor power supply voltage is too low. The power supply probably is not able to temporary deliver the demanded current.
The adjustment on the magnet pole was not successful, travel-plate of LINAX ${ }^{\circledR}$ / ELAX ${ }^{\circledR}$ or rotor of the third party motor is blocked or encoder / motor cable is broken. If at multi-axis applications, all servo controllers show error 65, then the D-sub encoder connector is unplugged at one axis. Check the value payload (ML).
Push the travel-plate by hand to a "free range" and try "REF" again.
The measured distance of coded reference marks is not plausible. Check the value payload (ML). Execute "REF" again. Execute REF again. Could be consecutive fault of vector field adjustment on the magnet pole. Check the values I stop (IS) and I run (IR), maybe you have to increase these values. Error in the consecutive order of HALL-signals, check Encoder cable. Potential short circuit or accidental ground in motor cable / coils. Release signal via PLC I/O Pin 9 not present (if activated) or power stage is disabled by Safe Motion Unit (SMU)
The maximum speed is exceeded with the position setpoint. Possible cause: Target/actual-position adjustment forgotten after referencing. With 100 nm measuring system $=9^{\prime} 000{ }^{\prime} 000 \mathrm{inc} / \mathrm{s}=0.9 \mathrm{~m} / \mathrm{s}$ $I^{2} \mathrm{~T}$ calculation has detected over-temperature in the coil. The calculated electrical angle differs more than 50° from the estimated angle. Interrupt power and execute REF again. Cleaning the measuring scale might also be necessary. Check the values I stop (IS) and I run (IR), maybe you have to increase these values. REF has to be executed before motor can move Difference between automatically measured Gantry Master Slave Offset and pre-set value through PGMSO greater than 0.5 mm (Since firmware V5.08C Info 35)
Depending on the operation mode, please check communication between servo controller and bus module or communication over serial interface (RS232/Ethernet). For communication over serial interface adjust Watchdog time if necessary (command „WD")
The XENAX ${ }^{\circledR}$ MAC-address is not valid, please contact the Jenny Science AG company
Force calibration or position of mechanical limit wrong. Restart "Force calibration" (ASCII: fcxx) or "mechanical limit calibration (ASCII: mlc).
One or more outputs of the PLC interface are overloaded In source configuration is Imax ${ }_{\text {out }}=100 \mathrm{~mA}$ per channel, in sink Configuration is max $_{\text {out }}=400 \mathrm{~mA}$ per channel.
Error can potentially occur due to inductive load without freewheeling diode. In this case please either insert free-wheeling diode or select Sink/Source configuration with Imax $_{\text {out }}=100 \mathrm{~mA}$ per channel.
Check encoder and extension cables. Connect cable shields on servo controller and motor with GND. Check Master / Slave cables Permanent data storage not possible ${ }^{1 .}$. Possible source of error like in error display " L ".
„n"
${ }^{1}$) Internal hardware failure of the device, please contact Jenny Science

Level I^{2} C Bus
Start-up key error
$1^{2} \mathrm{C}$ switch error
wrong checksum of application data Remote controller missing

General ${ }^{2} \mathrm{C}$ error
SMU error

Functional Safety active

SMU Error

3-Phase Output frequency $>599 \mathrm{~Hz}$

Encoder plausibility

Restart caused by exception
Firmware Checksum Failure

Interlaced warnings

AD Interrupt Nesting

Level $I^{2} \mathrm{C}$ Bus

Level $I^{2} \mathrm{C}$ Bus

Test with other key. Functionality in master-slave mode not supported.
Test without master-slave cables.
This error can appear after firmware download. Execute reset (RES) Master Slave configuration: One or more remote controllers defined in master are missing. Check master programs for nonexistent controllers (RemID) and delete them out of programs. Check the cable to the motor or the master-slave cable Critical error of the safety motion unit. Details to the cause and possible fix are given by WebMotion ${ }^{\circledR}$ as soon as error occurs. Please refer to chapter 17.3 Notes for Error 89 If safety function was active, the observation was triggered and the SMU (Safety Motion Unit) module has turned off the power stage. For SS2 or SLS, the ED (Emergency Deceleration) potentially was too small for Stop Timeout. Error of Safety Motion Unit or motion blocked by unconfigured SMU. Details to the cause and possible fix are given by WebMotion ${ }^{\circledR}$ as soon as error occurs.
Please refer to chapter 17.4 Notes for Error 91
The output frequency of the 3 -phase motor is over 599 Hz . There are only movements allowed, which do not lead to an output frequency of $>599 \mathrm{~Hz}$.
The encoder signals are not plausible. Possible causes: interruption of strands in the encoder cable, or encoder signals are led asymmetrically only. When encoder signals are led asymmetrically by intention for rotary motors, the encoder plausibility check can be turned off (refer to command ENCPD). XENAX ${ }^{\circledR}$ restarted due to software exception. Contact Jenny Science for details.
Please try to reload the XENAX ${ }^{\circledR}$ firmware again. If the error persists, please contact Jenny Science.
A new warning occurred before the state which led to the previous warning was cleared. Please make sure process is setup in a way where warnings cannot interlace (e.g. drive in soft limit and then drive in limit switch, before soft limit was left).
Fatal Error - Please restart the XENAX ${ }^{\circledR}$ servo controller. Motor encoder cable was disconnected. Please connect encoder cable again and restart XENAX ${ }^{\circledR}$.
The Level of the $I^{2} \mathrm{C}$ bus is not ok. Bus is blocked. Rotary motor connected to a XENAX ${ }^{\circledR}$ controller with linear axis setup (DIP Switch)? Or servo controller encoder connector defect. Test encoder: disconnect encoder; if XENAX ${ }^{\circledR}$ starts normally, connector is defect. If still not working, please contact Jenny Science for support.
$I^{2} \mathrm{C}$ bus response is „nak" (not acknowledged) No communication on $I^{2} \mathrm{C}$ bus, XENAX ${ }^{\circledR}$ internal or LINAX ${ }^{\circledR} / E L A X{ }^{\circledR} /$ ROTAX $^{\circledR}$, temperature check is not possible.

17.2 Notes for Error 50

Error 50 means that deviation from position target
value to actual position value is higher than
„DEVIATION POS ACT" (\rightarrow WebMotion ${ }^{\circledR}$, setup, state controller).
There are different possible causes which lead to this error. Please check the following:

Test POSITION Encoder counter
Status Display XENAX ${ }^{\circledR}$ WebMotion ${ }^{\circledR}$
When the carriage slider of a linear motor axis or the rotary linear motor is being moved by hand, the position encoder counter has to adjust accordingly. If not check cable, signal encoder (check A / A^{*} and B / B^{*}).

If a shaft of a rotary motor is being turned clockwise (when looking at front shaft), the POSITION encoder counter has to count positive. When turned counter clockwise, the POSITION encoder counter has to count negative. Compare to chapter 6.2.6 Definition of Rotating Direction for Servo Motors.
I STOP
I RUN
DEVIATION POS
DEVIATION TARGET POS

Check parameters in setup
sufficient?
sufficient?
2000 (Default)
50 (Default)

Check power supply unit
Is there enough voltage and enough power supply?
For LINAX ${ }^{\circledR}$ rotating field adjustment
Lxc F04 at least 5,2A
Lxc F08 at least 6,1A
Lx F10 at least 5,5A
Lx F40 at least 6.0A
Lx F60 at least. 8.0A

For ELAX ${ }^{\circledR}$ rotating field adjustment
Ex F20 at least 5,5A

There is no common standardization for servo motor connectors. Jenny Science is happy to support you during the setup process.

When using LINAX ${ }^{\circledR}$ linear motor axes and $E L A X^{\circledR}$ electric slides, we suggest executing the Quick Start function with automatic system-check.

Test of brushless servo motors for hall signals encoder A / B and motor phase (wiring and colors).

Test if motor is running at low velocity

With WebMotion ${ }^{\circledR}$

Menu Motion:
S-CURVE 20\%
AC (x1‘000) 100
SPEED 10 '000
Power
Rep Reverse 10 ’000

Menu Terminal:

> SCRV20 AC100000
> SP10000 WA10000
> PWC
> RR100

17.3 Notes for Error 89

The error 89 shows a critical SMU error, which cannot be deleted by a command. The source of the error has first to be cleared and then the XENAX has to be restarted in order to delete the error. The description of the error is shown in WebMotion. If the error cannot be cleared or if the error occurs multiple times, please contact Jenny Science.

Click on the Button „ERROR 89" and the window would be open.

The Fault description without WebMotion ${ }^{\circledR}$ Open a terminal program and give in the command „TESM".

F-Number	Description	Note
210	host communication, external supervising, watchdog	Communication SMU to XENAX interrupted. Potentially, bad shielding of encoder cable
220	data consistency/checksum master/slave	Parameters were not uploaded correctly. Please try to download SMU parameters again.
232	firmware version not compatible	Firmware was not uploaded correctly. Please try to download SMU firmware again.
241	dynamic plausibility circuit encoder	Invalid state of one or more encoder signals. Check encoder cable, possible cable break. Restart XENAX ${ }^{\circledR}$.
243	plausibility digital signal	Invalid voltage difference of one or more encoder signals. Check encoder cable, cable possibly broken
244	plausibility analogue signal	Unplugged encoder cable on XENAX ${ }^{\circledR}$. Problems with the signal connecting. Cable possibly broken.
245	encoder cable disconnected	Encoder cable disconnected to XENAX ${ }^{\text {® }}$.
246	faulty input states	There is only one active Input from the safety. There must always be two Inputs activated for safety.
247	power active input test	Pin 9 is activated in XENAX ${ }^{\circledR}$, this Input should not be used with the SMU
252	motor data failure	Motor data have not been forwarded to SMU. Potentially, there is bad shielding on the encoder cable

All other error codes are internal hardware failures. If error repeats multiple times, please contact Jenny Science.

17.4 Notes for Error 91

Error 91 shows not a critical SMU error. The source of the error, however, needs to be cleared. After that, the error can be normally deleted. The description of the error is shown in WebMotion.

Click on the Button „ERROR 91" and the window would be open.

Note

No safety function configured, motion blocked. As soon as a safety function is configured (see chapter 4.6
Functional Safety Parametrization in WebMotion ${ }^{\circledR}$) the block is permanently removed.
The blocking can also be temporarily removed until the next power cycle using the "DMBUS" command.
CANopen direct command object 0×5000, value 0×5030

Acceleration too high. Motion to hard mechanical limit

For Jenny Science motors (LINAX/ELAX/ROTAX):
Rise in temperature in the motor to fast or signal of measuring head too weak. Verify motion profile or for motors with glass measuring scale, please clean measuring scale. For motors of other manufacturers:
Maybe DIP switch wrong. Dip Switch must be set to "No JSC motor" (refer to chapter 7 Configuration Motor Type Jenny Science / Motor customer specific).

Potential short circuit or ground fault in the motor cable / coils

Over $80^{\circ} \mathrm{C}$ measured by the temperature sensor in the output stage

17.5 Arbitrary Display on 7-Segment

After turning on the logic supply (24V), typically a " 0 " appears on the display. The green LED of the RJ45 connector lights up green when using active Ethernet connection

If there is an arbitrary sign e.g. " 8 ." or if the display is flickering, there are the following causes possible:

17.5.1 Defective adapter for logic supply
17.5.2 Defective Firmware

Logic supply ON, display „F" \rightarrow boot loader active, Ethernet connection to PC/Laptop and load new firmware with WebMotion ${ }^{\circledR}$.
For the logic supply the adapter should deliver 24 V DC and at least 300 mA . Provides the adapter 24V DC for the logic as well as the power, 5A are required. Measure logic supply (24VDC), change adapter if necessary

If a wrong or corrupt firmware data was loaded or another cause:

Delete XENAX ${ }^{\circledR}$ with DIP switch firmware recorder and start boot loader

DIP switch 1 ON
Logic supply ON, firmware recorder is being deleted,
wait until „F" on display, logic supply off, DIP switch 1 OFF

MRL 2006/42/EC notes

- Surfaces may become hot, up to $85^{\circ} \mathrm{C}$

Copyright, Disclaimer

This data sheet contains proprietary information protected by copyright. All rights are reserved. This document may not be photocopied, reproduced or translated in whole or in part without the prior agreement of Jenny Science AG.

Jenny Science AG can neither guarantee nor be made responsible for any consequences resulting from incorrect information.

These manual is subject to change without notice.

Jenny Science AG
Sandblatte 11
CH-6026 Rain, Switzerland

Tel +41 (0) 412552525
www.jennyscience.ch info@jennyscience.ch

