

1

Instruction Manual
JS_MC_LIB with XENAX® Xvi,

EtherCAT® Busmodule and Codesys.

Version 1.1.2

Edit ion 18. March 2024

XENAX® Ethernet servo controller with
EtherCAT® Busmodul

Functional Safety, TÜV certified.
Force processes with „Force Limitation“,
„Force Monitoring“ and „Force Control“.

Introduction
This manual describes the Jenny Science Motion

Control Library (JS_MC_Lib) for Codesys. This
library is designed after the PLCopen standard

but also integrates Jenny Science specific
features.

2

Contents

1 Development Environment 5

1.1 Codesys GMBH 5
1.1.1 Programmable Logic Controller 5

1.1.2 Codesys 5

1.2 Jenny Science 5
1.2.1 WebMotion 5

1.2.2 XENAX® servo controller 6

1.2.3 LINAX® Linear motors 6

1.2.4 ELAX® Linear motor slides 6

1.2.5 ROTAX® Rotary motor axes 6

1.3 Required Resources 7
1.3.1 ESI EtherCAT Slave Information 7

1.3.2 JS_MC_Lib 7

1.4 Software Requirements 7

2 PLCopen Library (JsMcLib) 8

2.1 Drive Modes: point to point or interpolated 8

2.2 State Diagram 9
2.2.1 Profile Position Mode 10

2.2.2 Cyclic Synchronous Position Mode 11

2.3 Function blocks required for operation 12
2.3.1 JS_MC_Init 12

2.3.2 JS_MC_CyclicIn 13

2.3.3 JS_MC_CyclicOut 13

2.3.4 JS_MC_Power 13

2.3.5 JS_MC_Reference 14

2.3.1 JS_MC_Reset 15

2.3.1 JS_MC_Stop 15

2.4 Additional function blocks for Forceteq® 16
2.4.1 JS_MC_ForceCalibration 16

2.4.1 JS_MC_WriteLimit_I_Force 16

2.4.1 JS_MC_Read_I_Force 17

2.4.2 JS_MC_WriteLimit_Force 17

2.4.3 JS_MC_Read_Force 17

2.5 Additional function blocks for cyclic synchronous position mode 18

2.6 Additional function blocks for Profile Position 19
2.6.1 JS_MC_MoveAbsolute 19

2.6.2 JS_MC_MoveRelative 19

2.6.3 JS_MC_JogVelocity 20

3

2.6.4 JS_MC_Halt 20

2.1 Function blocks for error handling 21
2.1.1 JS_MC_ReadAxisError 21

2.1.2 JS_MC_ReadLibraryError 22

2.2 Optional function blocks 23
2.2.1 JS_MC_ReadStatus 23

2.2.2 JS_MC_ReadPSR 23

2.2.3 JS_MC_WriteDigitalOuput 24

2.2.4 JS_MC_ReadActualPosition 24

2.2.1 JS_MC_ReadDigitalInput 24

2.2.2 JS_MC_WriteParameter 25

2.2.3 JS_MC_ReadParameter 25

2.3 Minimum and Maximum Values of Function Blocks 26

2.4 Error numbers 26

2.5 Error sources 29

2.6 Error type 29

3 Example Projects in Codesys 30

3.1 Open Project 31

3.2 XENAX® ESI XML Installation 31

3.3 Library Installation 32

3.4 Download Programm 32

3.5 Launch Demo Program 33
3.5.1 Simple Demo 33

3.5.2 Force Limit 33

3.5.3 Force Sectors 33

4 New Project profile position in Codesys 35

4.1 Create Project 35

4.2 Add EtherCAT Master 36

4.3 Add XENAX® 37

4.1 Add Jenny Science Library 37

4.2 Copy Code 38

4.3 PDO Mapping 38

4.4 PDO Linking 38

4.5 Launch Project 38

5 New Project Softmotion CSP in Codesys 39

5.1 Create Project 39

5.2 Add EtherCAT Master 40

5.3 Add XENAX® as EtherCAT Slave 41

5.4 Configure XENAX® 41

4

5.5 Add Softmotion Axis 43

5.6 Add Program Code 45

5.7 PDO Linking 46

5.8 Download the Project 46

5

1 Development Environment
1.1 Codesys GMBH

1.1.1 Programmable Logic Controller

Codesys compatible PLC with EtherCAT interface
is required.

Hint: If the PLC is running on a Windows

machine, it is recommended to deactivate Vtx
and secure boot in the Bios option. Otherwise,

the PLC may not start.

1.1.2 Codesys

Codesys is the software development platform
used to program PLCs.

1.2 Jenny Science
1.2.1 WebMotion

The proprietary graphical user interface for
servo controllers is stored in the embedded web

server of the XENAX® servo controller

WebMotion® is launched with a web browser by
entering the corresponding TCP/IP address

of XENAX®.

LINAX® linear motor axes, ELAX® linear motor
slides and ROTAX® rotary axes are automatically

recognized. The corresponding controller
parameters are saved and loaded automatically.

With the Quick Start button, the linear motors
can easily and immediately be operated. No

other user manual is needed.

6

1.2.2 XENAX® servo controller

XENAX® servo controller for Jenny Science Axis
with integrated EtherCAT bus module. The bus

module is optional but it is required for this
application. One XENAX® can control one axis.

The XENAX® servo controller recognises all Jenny
Science motors and configures the parameters

correctly.

1.2.3 LINAX® Linear motors

The LINAX® linear motor axes are highly modular
and can be flexibly combined amongst each

other. Four different series are available.
Lxc = compact

Lxu = universal
Lxs = shuttle

Lxe = exclusive

1.2.4 ELAX® Linear motor slides

Specifically designed for handling and Pick and
Place tasks with strokes from 30mm up to

150mm. The configuration is extremely modular
and there is only one cable to the XENAX® servo

controller.

1.2.5 ROTAX® Rotary motor axes

Specifically designed for fast and precise
assembly and handling tasks. It can be equipped

with standard gripping tools which enables a
360° rotation and has a hollow shaft

feedthrough for vacuum or compressed air.
Rxvp = vacuum pressure

Rxhq = high torque

7

1.3 Required Resources

The following resources are needed for the
successful operation of the XENAX® servo
controller with an EtherCAT bus module.

1.3.1 ESI EtherCAT Slave Information

The ESI XML file is available on our website

www.jennyscience.com under XENAX® →
Firmware Bus Module.

1.3.2 JS_MC_Lib

The Jenny Science Motion Control library is

included in the zip file of this manual or it can be
downloaded from our website

www.jennyscience.com under XENAX® → PLCopen
Library.

1.4 Software Requirements

Software Version
Codesys V3.5 SP17 (older versions should work, but are not tested)

XENAX Firmware V5.20 or later
EtherCAT Bus-Module V2.70 or later

https://www.jennyscience.com/en/download
https://www.jennyscience.com/en/download

8

2 PLCopen Library (JsMcLib)

Jenny Science provides a PLCopen library for
Codesys. The PLCopen standard is easy to
understand and includes basic movement
functions as well as Jenny Science specific

features.

2.1 Drive Modes: point to point or interpolated

The Jenny Science Motion Control Library
supports two fundamental different drive

modes.

1. Point to point = Profile Position Mode:
The parameters distance, speed,

acceleration and s-curve are fixed before a
drive. The trajectory (driving curve) is

calculated on the Xenax®. This driving mode
is simpler to implement, but gives less

control over the driving curve to the PLC. It is
not possible drive a straight line with a XY-

Axis since both Axis can be started at the
same time but will reach their target at

different times. It is also not possible to drive
along a round curve because only the target

position can be specified and not the path to
the target location.

This mode fits a small PLC with low

performance. There is no need for a virtual
nc-axis.

2. Interpolated = Cyclic Synchronous

Position Mode:
In the cyclic synchronous position mode, the

target position is passed to the XENAX®
servo controller at cyclic time intervals (for
example every millisecond). The trajectory
(driving curve) is calculated on the Rexroth
PLC. For this reason, a virtual Axis for each

Axis is needed. This enables full control over
the driving curve. Thanks to the virtual nc-

axis, round curves or other complex driving
paths are now possible.

?

X

Y

Limited control over driving path
between two target positions with
different X and Y coordinates.
Furthermore, the speed and target
position can not be changed during a
drive. An Axis has to stop at every
target position.

X

Y

Full control over Axis movement.
Two grey circles show a change in
direction and speed without a stop.

9

2.2 State Diagram

The following diagram shows the state and
the behaviour of the axis when multiple

motion control function blocks are
“simultaneously” active.

Each motion command is a transition that

changes the state of the axis and, as a
consequence, influences the method of

calculation of the current movement.

All function blocks which do not appear in
the state diagram, do not affect the state of

the axis.

The current state of the axis can be
determined with the function block

“JS_MC_ReadStatus”. If a function block is
called where it is not allowed, the function

block reports an error.

The notes describe the necessary conditions
that must be met for a change in an axis

state.

Important:
In the states “Stopping”, “ErrorStop”,

”Disabled” and “Reference” no motion
blocks can be called. In standstill condition,

an axis must always be referenced before
starting a movement.

10

2.2.1 Profile Position Mode

11

2.2.2 Cyclic Synchronous Position Mode

In the Cyclic Synchronized mode, the axis drives in the
state “Standstill”. In this state, position values are

forwarded from the virtual axis to the XENAX®.

Note 1:
From any state. An error in the axis occurred.

Note 2:
From any state. JS_MC_Power.Enable = FALSE and

there is no error in the axis.
Note 3:

JS_MC_Reset AND JS_MC_Power.Status = FALSE.
Note 5:

JS_MC_Power.Enable = TRUE AND
JS_MC_Power.Status = TRUE

Note 6:
JS_MC_Stop.Done = TRUE AND JS_MC_Stop.Execute =

FALSE

12

2.3 Function blocks required for operation

The functionality of the JsMcLib is implemented in
various small function blocks. In this subchapter, all

those function blocks are described. Demo programs
in the subsequent chapters will show the function

blocks in action.

If Codesys has a similar function block, the JsMcLib
function block is implemented based on the original

block. Note that Units are always in increments.
Velocity is in increments per seconds while

acceleration and deceleration are in increments per
second2.

2.3.1 JS_MC_Init

This function block must be called once at start up to
initialize library variables. The block also provides a

reference to the axis which is needed in all other
JS_MC_Lib function blocks. Calling this function block

a second time will only re-evaluate the Axis output
reference.

Inputs

OperationMode
Choose gcJS_MC.jsmc_MODE_CYCLIC_SYNC if you
use a NC-Axis, otherwiede use
gcJS_MC.jsmc_Mode_PROFILE_POSITION

EncorceReferenceDrive
Set this to TRUE if motor must execute a reference
drive even though they are already referenced.
Recommended = FALSE

SlaveAddress
EtherCAT address or the current AutoInc address
at the bus (default Address type is
ECAT_AUTOINC_ADDRESS)

pstVAxis
Pointer to Virtual Softmotion axis, only used for
cyclic synchronous position mode

IoMap
IO mapping structur, map axis PDOs to this input
structure

Outputs

pstAxis The axis reference handle
Valid A valid reference handle of the axis is available

Error Error occurred within function block

Function Block Input Name Unit

Position Increments

Velocity Increments/s
Acceleration Increments/s2

Deceleration Increments/s2

SlaveAddress
UINT

Error
BOOL

BusMaster
USINT

pstVAxis
AXIS_REF_SM3

IoMap
JS_MC_IoMap

JS_MC_Init

OperationMode
SINT

pstAxis
POINTER TO JS_MC_Init_IS

EnforceReferenceDrive
BOOL

Valid
BOOL

13

2.3.2 JS_MC_CyclicIn

This function block has to be called at the start of the
periodically called program.

Checks if communication with axis is valid.
Reads cyclic data from the fieldbus.

Inputs

pstAxis The axis reference handle

Enable
As long as "Enable" is TRUE, cyclic data are
received from the bus.
(Must always be TRUE during operation)

Outputs

Valid
Cyclic realtime bus communication is valid (it is not
allowed to enable or execute other function blocks
unless valid is TRUE)

Error Error occurred within function block

ErrorID Error number

2.3.3 JS_MC_CyclicOut

Important: All other JSC_MC_Lib blocks must be
called between CyclicIn and CyclicOut.

Writes cyclic data to the fieldbus.

Inputs

pstAxis The axis reference handle

2.3.4 JS_MC_Power

This function block switches the power stage on and
off.

Inputs

pstAxis The axis reference handle

Enable
As long as "'Enable" is TRUE, the drive power Stage
is enabled

Outputs

Status Effective status of the power Stage

Valid TRUE when the axis is ready for operation

Error Error occurred within function block

ErrorID Error number

ErrorID
UINT

JS_MC_CyclicIn

pstAxis
POINTER TO JS_MC_Init_IS

Valid
BOOL

Enable
Bool

Error
BOOL

JS_MC_CyclicOut

pstAxis
POINTER TO JS_MC_Init_IS

JS_MC_Power

Status
BOOL

Valid
BOOL

Error
BOOL

ErrorID
UINT

pstAxis
POINTER TO JS_MC_Init_IS

Enable
BOOL

14

2.3.5 JS_MC_Reference

Performs a reference drive. The goal of the reference
drive is to find the absolute position of the axis.

The axis either drives to a mechanical stopper or to a
Z-Mark indicator on the scale.

The ReferenceMode influences the behaviour during
a reference drive.

Inputs

pstAxis The axis reference handle

Execute Start reference at rising edge

ReferenceMode Select behaviour during reference drive

ReferenceSpeedRot
Reference speed towards a reference switch
[increment/s] (only for rotative drives)

ZMarkSpeedRot
Reference speed towards a Z-Mark on the scale
[increment/s] (only for rotative drives)

Outputs

Done Reference procedure has finished successfully

Busy The function block is not finished

CommandAborted Function block is aborted by another command

Error Error occurred within function block

ErrorID Error number

ReferenceMode
USINT

CommandAborted
BOOL

JS_MC_Reference

pstAxis
POINTER TO JS_MC_Init_IS

Done
BOOL

Execute
BOOL

Busy
BOOL

ReferenceSpeedRot
UDINT

Error
BOOL

ZMarkSpeedRot
UDINT

ErrorID
UINT

15

2.3.1 JS_MC_Reset

This function block makes a transition in the State
Diagram from Errorstop to Standstill or Disabled by

resetting the axis error.

Inputs

pstAxis The axis reference handle

Execute Reset the axis at the rising edge

Outputs

Done Standstill or Disabled state is reached

Busy The function block is not finished

Error Error occurred within function block

ErrorID Error number

2.3.1 JS_MC_Stop

This function block commands a controlled motion
stop and transfers the axis to the state Stopping. The

axis stays in the Stopping state until execute is set
back to FALSE. All move commands are blocked as

long as the axis stays in the sopping state.

The axis does not have to be in motion to call
MC_Stop. This means MC_Stop can be used to ensure

an axis says at the same positon.

Inputs

pstAxis The axis reference handle

Execute Reset the action at rising edge

Deceleration Value of the deceleration [inc/s2]

Outputs

Done Zero velocity is reached

Busy The function block is not finished

CommandAborted
Command is aborted by switching off power
(only possibility to abort)

Error Error occurred within function block

ErrorID Error number

JS_MC_Reset

pstAxis
POINTER TO JS_MC_Init_IS

Done
BOOL

Execute
BOOL

Busy
BOOL

ErrorID
UINT

Error
BOOL

Deceleration
UINT

CommandAborted
BOOL

JS_MC_Stop

pstAxis
POINTER TO JS_MC_Init_IS

Done
BOOL

Execute
BOOL

Busy
BOOL

Error
BOOL

ErrorID
UINT

16

2.4 Additional function blocks for Forceteq®

2.4.1 JS_MC_ForceCalibration

Starts a Force Calibration. The axis moves from start-
to end position and measures cogging force and

friction. Those two forces are then compensated in
future drives.

An active Force Calibration can only be stopped by

calling JS_MC_STOP.
If the motor oscillates during the Force Calibration,

set IterativeFcDisable. This will clear the old
calibration data before a new calibration is started.

Inputs

pstAxis The axis reference handle

Execute Start move at rising edge

StartPosition Start position for the force calibration [Inc]

EndPosition End position for the force calibration [Inc]

IterativeFcDisable
0 = Takes values from previous FC to improve
calibration
1= Ignores calibration values from last FC

Outputs

Done Force Calibration finished successfully

Busy Function block is not finished

CommandAborted Function block is aborted by another command

Error Error occurred within function block

ErrorID Error number

2.4.1 JS_MC_WriteLimit_I_Force

Sets the I_Force limitation in [10mA] with Forceteq
Basic. Note that the PDO Limit_I_Force must be

mapped and linked.

Inputs

pstAxis The axis reference handle

Enable Writes Limit I_Force to XENAX when enabled

Limit_I_Force
I_Force limitation in [x10 mA], 20 = 200mA , 0 = no
limitation.

Outputs

Valid Write was successful

Error Error occurred within function block

StartPosition
DINT

CommandAborted
BOOL

JS_MC_ForceCalibration

pstAxis
POINTER TO JS_MC_Init_IS

Done
BOOL

Execute
BOOL

Busy
BOOL

EndPosition
DINT

Error
BOOL

IterativeFcDisable
BOOL

ErrorID
UINT

JS_MC_WriteLimit_I_Force

pstAxis
POINTER TO JS_MC_Init_IS

Valid
BOOL

Enable
BOOL

Error
BOOL

Limit_I_Force
UINT

17

2.4.1 JS_MC_Read_I_Force

Reads the Force-proportional I_Force in mA
with Forceteq® basic.

Inputs

pstAxis The axis reference handle

Enable
As long as "Enable" is TRUE, the actual I_Force is
read out continuously

Outputs

Valid
A valid set of outputs is available at the function
block

Error Error occurred within function block

ErrorID Error number

I_Force Actual I_Force [mA]

2.4.2 JS_MC_WriteLimit_Force

Sets the force limitation in mN based on the value
measured by the Signateq® force sensor (only for

Forceteq Pro). Note that the PDO Limit_Force must be
mapped and linked.

Inputs

pstAxis The axis reference handle

Enable Writes LimitForce to XENAX when enabled

Limit_Force Force limit [mN]

Outputs

Valid Last write was successful

Error Error occurred within function block

2.4.3 JS_MC_Read_Force

Reads the force in mN measured by the Signateq®
force sensor (only with Forceteq Pro).

Inputs

pstAxis The axis reference handle

Enable
As long as "Enable" is TRUE, the actual force is read
out continuously

Outputs

Valid
A valid set of outputs is available at the function
block

Error Error occurred within function block

ErrorID Error number

Force Actual force measured by Signateq® [mN]

JS_MC_WriteLimit_Force

pstAxis
POINTER TO JS_MC_Init_IS

Valid
BOOL

Enable
BOOL

Error
BOOL

Limit_Force
DINT

JS_MC_Read_Force

pstAxis
POINTER TO JS_MC_Init_IS

Valid
BOOL

Enable
BOOL

Error
BOOL

Force
DINT

ErrorID
UINT

JS_MC_Read_I_Force

pstAxis
POINTER TO JS_MC_Init_IS

Valid
BOOL

Enable
BOOL

Error
BOOL

I_Force
DINT

ErrorID
UINT

18

2.5 Additional function blocks for cyclic
synchronous position mode

Use the MC_MoveAbsolute function block from

Codesys to move the axis.

JS_MC_STOP calls MC_STOP internally if the axis is
driving in cyclic synchronous positon mode (csp).

During a force calibration or a reference drive, the
axis is not driving in csp mode. JS_MC_STOP will still

correctly abort a non csp mode drive. This means that
only JS_MC_STOP will abort a force calibration or a

reference drive and MC_STOP will not.

19

2.6 Additional function blocks for Profile Position

2.6.1 JS_MC_MoveAbsolute

This function block drives to an absolute position.
Only for profile position mode. In cyclic synchronous

position mode, use MC_MoveAbsolute instead.

Inputs

Execute Start move at rising edge

Position Target position for the motion [inc]

Velocity
Value of maximum velocity [inc/s]
(not necessarily reached)

Acceleration
Value of maximum acceleration [inc/s2]
(not necessarily reached)

Scurve
Value of S-curve parameter during the acceleration
[%]

Outputs

Done Commanded position reached
Busy The function block is not finished

CommandAborted Function block is aborted by another command

Error Error occurred within function block

ErrorID Error number

IN/OUT

pstAxis The axis reference handle

2.6.2 JS_MC_MoveRelative

This function block drives to a relative position.
Only for profile position mode. In cyclic synchronous

position mode, use MC_MoveRelative instead.

Inputs

Execute Start move at rising edge

Distance Target distance for the motion [inc]

Velocity
Value of maximum velocity [inc/s]
(not necessarily reached)

Acceleration
Value of maximum acceleration [inc/s2]
(not necessarily reached)

Scurve
Value of S-curve parameter during the acceleration
[%]

Outputs

Done Commanded position reached
Busy The function block is not finished

CommandAborted Function block is aborted by another command

Error Error occurred within function block

ErrorID Error number

IN/OUT

pstAxis The axis reference handle

Velocity
UDINT

CommandAborted
BOOL

Acceleration
UDINT

Error
BOOL

Scurve
UDINT

ErrorID
UINT

Position
DINT

Busy
BOOL

JS_MC_MoveAbsolute

pstAxis
POINTER TO JS_MC_Init_IS

pstAxis
POINTER TO JS_MC_Init_IS

Execute
BOOL

Done
BOOL

Velocity
UDINT

CommandAborted
BOOL

Acceleration
UDINT

Error
BOOL

Scurve
UDINT

ErrorID
UINT

Distance
DINT

Busy
BOOL

JS_MC_MoveRelative

pstAxis
POINTER TO JS_MC_Init_IS

pstAxis
POINTER TO JS_MC_Init_IS

Execute
BOOL

Done
BOOL

20

2.6.3 JS_MC_JogVelocity

This function block drives with a constant speed in
positive or negative direction. Only for profile position

mode. In cyclic synchronous position mode, use
MC_JogVelocity instead.

Inputs

Enable
As long as “Enable” is TRUE, the axis in in
Continuous Motion mode (Jog drive possible)

Velocity
Value of maximum velocity [inc/s]
Note: This value can also be changed while a
movement is taking place

Acceleration

Value of maximum acceleration [inc/s2]
Note: This value can also be changed while a
movement is taking place (new value is used at the
next velocity change)

Deceleration

Value of maximum deceleration [inc/s2]
Note: This value can also be changed while a
movement is taking place (new value is used at the
next velocity change)

JogPositive Executes a movement in the positive direction

JogNegative Executes a movement in the negative direction

Outputs

Active
The function block is active, possible to execute
movements

Busy The function block is not finished

CommandAborted Function block is aborted by another command

Error Error occurred within function block

ErrorID Error number

Jogging Movement being carried out

IN/OUT

pstAxis The axis reference handle

2.6.4 JS_MC_Halt

This function block stops an ongoing
JS_MC_MoveAbsolute or a JS_MC_MoveRelative

command and switches to the state standstill.

Inputs

Execute Start the action at rising edge

Deceleration Value of the deceleration [inc/s2]

Outputs

Done Zero velocity is reached
Busy Function block is not finished

CommandAborted Function block is aborted by another command

Error Error occurred within function block

ErrorID Error number

IN/OUT

pstAxis The axis reference handle

JogPositive
BOOL

JogNegative
BOOL

ErrorID
UINT

Jogging
BOOL

Acceleration
UDINT

CommandAborted
BOOL

Deceleration
UDINT

Error
BOOL

JS_MC_JogVelocity

pstAxis
POINTER TO JS_MC_Init_IS

pstAxis
POINTER TO JS_MC_Init_IS

Enable
BOOL

Active
BOOL

Velocity
UDINT

Busy
BOOL

Deceleration
UDINT

Busy
BOOL

JS_MC_Halt

pstAxis
POINTER TO JS_MC_Init_IS

pstAxis
POINTER TO JS_MC_Init_IS

Execute
BOOL

Done
BOOL

CommandAborted
BOOL

Error
BOOL

ErrorID
UINT

21

2.1 Function blocks for error handling

2.1.1 JS_MC_ReadAxisError

Describes general axis errors that are not related to
function blocks. Use JS_MC_RESET to clear the axis

error.

Inputs

Enable
While TRUE, the output value provides the
parameter value continuously for reading out.

Outputs

Valid Valid outputs are available

Error Error occurred within function block

ErrorID Error number

AxisError Axis error has occured.

AxisErrorID Axis error number, see XENAX manual

IN/OUT

pstAxis The axis reference handle

Error
BOOL

JS_MC_ReadAxisError

pstAxis
POINTER TO JS_MC_Init_IS

pstAxis
POINTER TO JS_MC_Init_IS

Enable
BOOL

Valid
BOOL

ErrorID
UINT

AxisError
BOOL

AxisErrorID
UINT

22

2.1.2 JS_MC_ReadLibraryError

This block can be used to handle all errors at a central
point in the code. Note that this function block is

completely optional.
Collect all errors from axis and JS_MC_Lib function
blocks. All errors are collected in a queue. The first

error in the queue is displayed in the output
ErrorRecord.

Each error must be acknowledged to display the next
error until the queue is empty.

The error should be handled first before it is
acknowledged. This means to reset the enable or

execute input of the
Function block which caused the error. Or to call

JS_MC_RESET to clear the error caused by the axis.
An unhandled error which is acknowledged will be

recollected and again saved in the queue.

Inputs

Enable
As long as "Enable" is TRUE, the function block can
be used to read out axis and function block errors

Acknowledge Acknowledges the error record currently displayed

Outputs

Valid
A valid set of outputs is available at the function
block. This output is set to FALSE while an error is
being acknowledged or error text is being read

Busy
New output data is to be expected. This output is
set to TRUE while an error is being acknowledged
or error text is being read

Error Error occurred within this function block

ErrorID Error number of this function block

ErrorRecordAvailable
Set if a new error record is displayed in the
"ErrorRecord" output. FALSE if errpr queue is
empty

ErrorRecord
Displays the first error in the queue including the
error number, error type and error source.

FunctionBlockErrorCount Number of pending function block errors to display

AxisErrorCount Number of pending axis errors to display

AxisWarningCount Number of pending axis warnings to display

IN/OUT

pstAxis The axis reference handle

Acknowledge
BOOL

Busy
BOOL

JS_MC_ReadLibraryError

pstAxis
POINTER TO JS_MC_Init_IS

pstAxis
POINTER TO JS_MC_Init_IS

Enable
BOOL

Valid
BOOL

Error
BOOL

ErrorID
UINT

ErrorRecordAvailable
BOOL

ErrorRecord
JS_MC_ErrorRecord

FunctionBlockErrorCount
UINT

AxisErrorCount
UINT

AxisWarningCount
UINT

23

2.2 Optional function blocks

2.2.1 JS_MC_ReadStatus

Reads the current state of the PLCopen DS402 state
machine.

Inputs

Enable
As long as "'Enable" is TRUE, the axis status is read
out continuously

Outputs

Valid
A valid set of outputs is available at the function
block

Error Error occurred within function block

ErrorID Error number

Errorstop
An error has occurred. Use JS_MC_Reset to
acknowledge errors

Disabled
JS_MC_Power has not powered the axis, or an
error has been acknowledged by JS_MC_Reset and
the axis has been turned off

Stopping JS_MC_Stop is active

Standstill Motion is not active on the drive

DiscreteMotion
Axis is in motion due to one of the following
function blocks: JS_MC_MoveAbsolute,
JS_MC_Relative.

Reference JS_MC_Reference has started referencing the axis

ContinuousMotion
Axis is in motion due to the following function
block: JS_MC_JogVelocity, JS_MC_ForceCalibration

IN/OUT

pstAxis The axis reference handle

2.2.2 JS_MC_ReadPSR

Reads the Process Status Register (PSR). This registers
contains various information about the XENAX® servo

controller.

Inputs

Enable
As long as "'Enable" is TRUE, the actual Process
Status Register is read out continuously

Outputs

Valid
A valid set of outputs is available at the function
block

Error Error occurred within function block

ErrorID Error number

ProcessStatusRegister
Process Status Register of the XENAX controller
(see data type JS_MC_Init_IS_ProcStat)

IN/OUT

pstAxis The axis reference handle

DiscreteMotion
BOOL

Reference
BOOL

Disabled
BOOL

Standstill
BOOL

ContinuousMotion
BOOL

Stopping
BOOL

Error
BOOL

ErrorID
UINT

Errorstop
BOOL

JS_MC_ReadStatus

pstAxis
POINTER TO JS_MC_Init_IS

pstAxis
POINTER TO JS_MC_Init_IS

Enable
BOOL

Valid
BOOL

ErrorID
UINT

ProcessStatusRegister
JS_MC_Init_IS_ProcStat

Error
BOOL

JS_MC_ReadPSR

pstAxis
POINTER TO JS_MC_Init_IS

pstAxis
POINTER TO JS_MC_Init_IS

Enable
BOOL

Valid
BOOL

24

2.2.3 JS_MC_WriteDigitalOuput

This function block sets the digital output pins on the
servocontroller. The output is written once when

"Execute" is set.

Inputs

Execute Writes the Digital value at the rising edge

DigitalOutput The value of digital outputs (bit-coded)

Outputs

Done Digital outputs are written

Error Error occurred within function block

ErrorID Error number

IN/OUT

pstAxis The axis reference handle

2.2.4 JS_MC_ReadActualPosition

Reads the position of the axis in increments. Note
that actual position PDO must be mapped.

Inputs

Enable
As long as "'Enable" is TRUE, the actual position is
read continuously

Outputs

Valid
A valid set of outputs is available at the function
block

Error Error occurred within function block

ErrorID Error number

Postion Actual position of the axis [Inc]

IN/OUT

pstAxis The axis reference handle

2.2.1 JS_MC_ReadDigitalInput

Reads digital inputs which are located in the XENAX
socket. Note that "Digital Inputs" PDO must be

mapped.

Inputs

Enable
As long as "'Enable" is TRUE, the digital inputs are
read continuously

Outputs

Valid
A valid set of outputs is available at the function
block

Error Error occurred within function block

ErrorID Error number

DigitalInput The value of digital inputs (bit-coded)

IN/OUT

pstAxis The axis reference handle

ErrorID
UINT

JS_MC_WriteDigitalOutput

pstAxis
POINTER TO JS_MC_Init_IS

pstAxis
POINTER TO JS_MC_Init_IS

Execute
BOOL

Done
BOOL

DigitalOutput
USINT

Error
BOOL

ErrorID
UINT

Position
DINT

Error
BOOL

JS_MC_ReadActualPosition

pstAxis
POINTER TO JS_MC_Init_IS

pstAxis
POINTER TO JS_MC_Init_IS

Enable
BOOL

Valid
BOOL

ErrorID
UINT

DigitalInput
UINT

Error
BOOL

JS_MC_ReadDigitalInput

pstAxis
POINTER TO JS_MC_Init_IS

pstAxis
POINTER TO JS_MC_Init_IS

Enable
BOOL

Valid
BOOL

25

2.2.2 JS_MC_WriteParameter

This block is used to write CANopen parameter from
the axis. All available CANopen paramters are

described in the
"CANOPEN_ETHERNET_MANUAL.pdf"

(https://www.jennyscience.ch/en/products/download).

Inputs

Execute Writes the value at the rising edge

DataObject
Desired data object to be written
(according CANopen communication profile)

SubID SubID of the desired data object to be written

DataLength
Data length of the desired data object to be
written in bytes

Value Value to be written to the desired data object

Outputs

Done Value is written to the object

Busy The function block is not finished

Error Error occurred within function block

ErrorID Error number

IN/OUT

pstAxis The axis reference handle

2.2.3 JS_MC_ReadParameter

This block is used to read out CANopen parameter
from the axis. All available CANopen parameters are

described in the
"CANOPEN_ETHERNET_MANUAL.pdf"

(https://www.jennyscience.ch/en/products/download).

Inputs

Enable
As long as "'Enable" is TRUE, the desired data
object is read out continuously

DataObject
Desired data object to be written
(according CANopen communication profile)

SubID SubID of the desired data object to be written

DataLength
Data length of the desired data object to be
written in bytes

Outputs

Valid
A valid set of outputs is available at the function
block

Busy The function block is not finished

Error Error occurred within function block

ErrorID Error number

Value Value to be written to the desired data object

IN/OUT

pstAxis The axis reference handle

SubID
USINT

Error
BOOL

DataLength
USINT

ErrorID
UINT

Value
DINT

DataObject
UINT

Busy
BOOL

JS_MC_WriteParameter

pstAxis
POINTER TO JS_MC_Init_IS

pstAxis
POINTER TO JS_MC_Init_IS

Execute
BOOL

Done
BOOL

Value
DINT

SubID
USINT

Error
BOOL

DataLength
USINT

ErrorID
UINT

DataObject
UINT

Busy
BOOL

JS_MC_ReadParameter

pstAxis
POINTER TO JS_MC_Init_IS

pstAxis
POINTER TO JS_MC_Init_IS

Enable
BOOL

Valid
BOOL

https://www.jennyscience.ch/en/products/download
https://www.jennyscience.ch/en/products/download

26

2.3 Minimum and Maximum Values of Function
Blocks

Following minimum and maximum values of the

function blocks should be adhered to.

name datatype min max

Velocity linear UDINT 10 inc/s 9000000 inc/s

Velocity rotative UDINT 10 inc/s 100000000 inc/s

Deceleration UDINT 2000 inc/s2 1000000000 inc/s2

Acceleration UDINT 2000 inc/s2 1000000000 inc/s2
S-curve UDINT 1 % 100 %

2.4 Error numbers

The following ErrorIDs can be generated by the
JsMcLib function blocks. Lower numbers than 5000

are Axis Error generated by the XENAX® servo
controller. Please look up those errors in the XENAX®

Manual.

Value Name Description Correction

0 ERR_OK
FUB executed correctly
with no errors

None.

50000 jsmcERR_NIL_POINTER No axis passed to FB
Ensure function block call only
with correct axis passed.

50001 jsmcERR_DRIVE_NOT_READY
controller is not ready to
switch on

Check controller for errors

50002 jsmcERR_DRIVE_SWITCHED_OFF controller is switched off
Don't call function block when
controller is switched off

50004 jsmcERR_REFERENCE_WRONG_METHOD
Reference method is not
correct for the motor

Check documentation for
allowed reference methods for
the motor

50006 jsmcERR_ACCE_TO_SMALL Acceleration is to small
Use larger acceleration (>=2000
inc/s2)

50008 jsmcERR_SCURVE_NOT_IN_RANGE
Scurve is not in allowed
range

Use Scurve in allowed range
(1...100%)

50010 jsmcERR_SDO_COMM_FAILURE
Failure during SDO
communication

Check power link connection to
the Servo Controller

50011 jsmcERR_POWER_UP_FAILURE
Failure during power up
sequence

Check Servo Controller for
correct power supply

50012 jsmcERR_POWER_LOST
Power was turned off
outside of JS_MC_Power
control

Check and quit errors from other
function blocks or axis, which
caused the power off

50013 jsmcERR_WRONG_STATE_FOR_FB
The FB cannot be used in
the current state

Check program to call FB's only
in allowed states

50014 jsmcERR_WRONG_OP_MODE_FOR_FB
The FB cannot be used in
the current mode of
operation

Only use allowed FB's for the
desired mode of operation
(profile position or cyclic
synchronized)

27

Value Name Description Correction

50015 jsmcERR_EXECUTION_ERROR
The FB failed during
execution by an external
error

Check and quit errors from other
function blocks or axes, which
caused the fault

50016 jsmcERR_BUFFER_TO_SMALL
The buffer for the error
text string is to small

Put a pointer to a buffer for the
error text string which size is at
least 50 characters

50017 jsmcERR_TEXT_OBJ_NOT_FOUND
Error text object or
function block text
object not found

Enter correct name of the error
text object and ensure, that the
error text object
(JsMcEtxDe/JsMcEtxEn) and the
function block text object
(JsMcFBtxEn) are present in the
project

50018 jsmcERR_TEXT_READOUT_FAILURE
Error text or function
block text could not be
read successfully

Ensure that the error text object
(JsMcEtxDe/JsMcEtxEn) and the
function block text object
(JsMcFBtxEn) are present in the
project

50019 jsmcERR_WRONG_GENERAL_OP_MODE
general mode of
operation not supported

Set a supported general mode of
operation in JS_MC_Init
(OperationMode =
jsmcMODE_PROFILE_POSITION
or jsmcMODE_CYCLIC_SYNC)

50020 jsmcERR_REF_SPEED_NOT_IN_RANGE
Reference speed for
rotative motors is out of
range

Use reference speed in allowed
range (0...250000 inc/s)

50021 jsmcERR_ZMARK_SPEED_NOT_IN_RANGE
Z-Mark speed for
rotative motors is out of
range

Use Z-Mark speed in allowed
range (0...100000 inc/s)

50022 jsmcERR_VELOCITY_NOT_IN_RANGE Velocity is out of range

Use velocity in allowed range
(10...9000000 inc/s for linear
motor, 10...100000000 inc/s for
rotative motor)

50023 jsmcERR_ACCE_TO_LARGE Acceleration is to large
Use smaller acceleration (smaller
than 1000000000 inc/s^2)

50024 jsmcERR_CYCLE_TIME_FAILURE Cycle time setting failure

Use correct cycle time setting
(bus cycle time >= 200us and
software task cycle time >= bus
cycle time)

50025 jsmcERR_DECE_TO_SMALL Deceleration is to small
Use larger deceleration (>=2000
inc/s)

50026 jsmcERR_DECE_TO_LARGE Deceleration is to large
Use smaller deceleration
(smaller than 1000000000
inc/s^2)

50027 jsmcERR_FW_VERS_FAILURE Firmware version failure
Use at least XENAX firmware
V3.64D

50028 jsmcERR_PDO_MAPPING_CHK_FAILURE
Failure during PDO
mapping check

Error in AsIOPVInfo() function
block of AsIO library

50029 jsmcERR_PDO_MAPPING_MISSING
Necessary PDO mapping
missing

Check, if all necessary PDOs are
mapped in I/O Mapping

50030 jsmcERR_NO_DATA_ADDRESS_ASSIGNED
No data address for
error text string assigned

Assign valid data address for
error text string

28

Value Name Description Correction

50031 jsmcERR_SDO_ACCESS_FAILURE Invalid SDO access
Check input values DataObject,
SubID and DataLength and set
correct values

50032 jsmcERR_CYCLIC_COMM_INTERRUPTED
Cyclic communication
interrupted

Don't enable power until
JS_MC_CyclicIn is valid and cyclic
communication is running

50033 jsmcERR_SPAD_FAILURE
Wrong set point
acknowledge setting

50034 jsmcERR_INDEX_NOTVALID Index not valid

50035 jsmcERR_VALUE_OUTOFRANGE Value not in range

50036 jsmcERR_FC_INPUTS_NOTVALID
Force calibration inputs
not valid

50037 jsmcERR_FC_NO_LINEAR
Force calibration only
with linear motors

50038 jsmcERR_FC_REF_ERROR
Force calibration: Error
during reference

50039 jsmcERR_FC_MOTION_ERROR
Force calibration: Error
during motion

50040 jsmcERR_UNKNOWN_MOTORTYPE Unknown motor type

50041 jsmcERR_VIRTUAL_AXIS_RESET_FAILURE
MC_Reset from Codesys
failed, see ErrorID of
MC_Reset

29

2.5 Error sources

The error source block can be found in the
ErrorRecord output of the ReadAxisError block. The

table below associates sources number with the
corresponding function block.

ErrorSource Nr. Error srouce

1 Axis error or warning

2 CyclicIn
3 Power

4 Reference

5 MoveAbsolute

6 MoveRelative

7 MoveCyclicPosition
8 Stop

9 Halt

10 AxisErrorCollector

11 ReadAxisError

12 ReadParameter
13 WriteParameter

14 JogVelocity

15 ReadActualCurrent

16 ReadDigitalInput

17 ReadDigitalOutput

18 WriteDigitalOuput
19 SetPDO

20 ForceCalibration

2.6 Error type

The error type is important for error handling.
Because of that, the error type is provided in the error

record in an additional field.

ErrorTyp Nr. ErrorTyp

1 Axis error

2 Axis warnung

3 Function block error

30

3 Example Projects in Codesys

This chapter describes how to put a Jenny
Science axis into operation. Example projects are

used for this purpose

There are three different examples:

Simple Demo
Axis moves to two alternating positions.

Force Limit

Axis drives forward with a limited Force. If the
limited force is reached due to an obstacle in the

forward path, the axis stops and moves back
quickly.

Forceteq

This is an extended version of the Force Limit
example project. This example includes a demo

of force monitoring where 3 sectors are defined.
When the axis detects an obstacle in the forward

path, it will evaluate the sectors and show in
which sector the obstacle was.

31

3.1 Open Project

Start Codesys, select “Open Project” and choose
one of the demo projects. It is recommended to
start with the “Simple Demo” example project.

3.2 XENAX® ESI XML Installation

The EtherCAT Slave Information XML for the
XENAX can be installed over

Tool -> Device database

The required XML file can be downloaded from
www.jennyscience.ch under

“XENAX Servocontroller->Firmware Bus Module
->EtherCAT”.

Click add device and select the XML file in the ESI
folder. There are other files in the same folder

but only the XML file is needed.

https://www.jennyscience.com/en/download

32

3.3 Library Installation

To install the JS_MC_Lib, open the

“Library repository” over
Tools->Libraries->Library Repository

Install the library which is provided in the same
download as this documentation.

3.4 Download Programm

Go online and download the PLC program.

33

3.5 Launch Demo Program

Press play to start the demo program.

The following subsection will describe 3 different
demo applications in more details.

3.5.1 Simple Demo

This demo initialises and powers on the motor.
After that, the demo programs calls

MC_MoveAbsolute with an alternating target
position of 0 and 44’000 increments.

3.5.2 Force Limit

This project demonstrates the force limitation
part of Forceteq®. The axis drives forward with a

limited force. If an obstacle is in the forward
path, the force limit will be reached and the axis

moves back quickly to the starting position.

After power up, a Force Calibration is
performed. During a Force Calibration, the

motor drives slowly from start- to end position
and records friction and cogging. Those forces

are then automatically compensated by the
XENAX®. Such a calibration makes the force

limitation much more accurate.

3.5.3 Force Sectors

This demo expands the “Force Limit” demo
program with the features of Force Monitoring.

With Force Monitoring, it is possible to define
force-position sectors. After a drive is finished,

each sector is either in a successful or failed
state. Each edge of a sector can be defined as

entry or exit edge or both. A sector is successful
if the curve entered through an entry edge and

left through an exit edge. The demo program
defines 3 such sectors without an exit edge. This

means that a sector is successful if the curve
does not leave the sector. This happens in the
demo program if an obstacle was detected in

that sector.

34

Force-position sectors configured by PLC
software and viewed in Webmotion:

 ******* Sector I_Force 1 ***************
Sector IForce Start = 0
Sector IForce End = 14000
IForce Low x10mA = -10
IForce High x10mA = 30
Sector Transit Config = 4096

 ******* Sector I_Force 2 ***************
Sector IForce Start = 14000
Sector IForce End = 28000
IForce Low x10mA = -10
IForce High x10mA = 30
Sector Transit Config = 4096

 ******* Sector I_Force 3 ***************
Sector IForce Start = 28000
Sector IForce End = 42000
IForce Low x10mA = -10
IForce High x10mA = 30
Sector Transit Config = 4096

The variables of the main program indicate in

which sector the obstacle was detected.

35

4 New Project profile position in Codesys

This chapter describes how to put a Jenny
Science Axis into operation without a demo

project. It is possible to create a new project or
to add a Jenny Science axis into an existing

project.

4.1 Create Project

File→New→Project…

Select Empty project and click ok.

Select your device and your preferred
programming language. The device “CODESYS

Control Win V3 x64” can be used to simulate a
PLC on the local windows machine.

36

4.2 Add EtherCAT Master

Add an EtherCAT master under Add Device.

Select EtherCAT master and add the device.

Select the network interface which shall be used
for EtherCAT communication and define the bus

cycle time

The Interval of the EtherCAT task must be set to
the same value as the bus cycle time.

37

4.3 Add XENAX®

Add the XENAX® servo controller as a slave to
the EtherCAT bus. Note that the XENAX® must

be installed first as described in section 3.2
XENAX® ESI XML Installation.

4.1 Add Jenny Science Library

Add the installed JSC_MC_Lib.
Installing the JSC_MC_Lib is described in 3.3

Library Installation.

38

4.2 Copy Code

Copy the code from a demo application.

4.3 PDO Mapping

Enable the two required PDOs. There are two
additional PDOs which can be enabled for

additional features.

4.4 PDO Linking

Map all PDO channels to a variable in the
_IOMap structure.

4.5 Launch Project

Press play to compile and download the project.
Make sure there are no errors.

Rx Tx

required PDOs

PDO 5 PDO 5

Optional PDOs

PDO 6 PDO 6

39

5 New Project Softmotion CSP in Codesys

This chapter describes how to put a Jenny
Science Axis into operation without a demo

project. It is possible to create a new project or
to add a Jenny Science axis into an existing

project.

5.1 Create Project

File→New→Project…

Select Empty project and click ok.

Select your device and your preferred
programming language. The device “CODESYS

Control Wtroll3 x64” can be used to simulate a
PLC on the local windows machine.

40

5.2 Add EtherCAT Master

Select add Device on the PLC device to add a
EtherCAT Master.

Select the EtherCAT Master Softmotion and click
on add device.

Reconfigure the bus cycle time to at least 1ms
and make sure that the correct MAC address is

selected.

41

5.3 Add XENAX® as EtherCAT Slave

The XENAX® can be added as a slave device by
scanning on the EtherCAT master.

Copy the XENAX® into the current project.

5.4 Configure XENAX®

Check expert settings to unlock all options.

In the Expert Process Data settings, enable the
first three PDOs

42

Also enable the first three input PDOs.

The process data section should now look like
this.

43

5.5 Add Softmotion Axis

Add a Softmotion axis below the XENAX®
Servocontroller.

Press ok.

Configure the Dynamic limits section according
to the motor type.

JSC Motor Type Resolution Scale Velocity Acceleration Deceleration Jerk

LINAX®, ELAX® 1 μm/inc 4500 45000 45000 450000

LINAX® 100 nm/inc 900 9000 9000 90000

ROTAX® Rxvp 0.005625 deg/inc 9000 90000 90000 900000

ROTAX® Rxhq 0.003 deg/inc 7200 72000 72000 720000

44

The scaling depends on the motor type too. The
suggested scaling below is made so that a unit
for linear motors is 1mm and a unit for rotary

motors is 1° degree.

LINAX® or ELAX with resolution scale of 1µm/inc:

LINAX® with resolution scale of 100nm/inc:

ROTAX® Rxvp:

ROTAX® Rxhq:

45

5.6 Add Program Code

Add the installed JSC_MC_Lib.
Installing the JSC_MC_Lib is described in 3.3

Library Installation.

All Softmotion commands must be called from
the EtherCAT task. Add a new POU under

Application.

Give it a name and select Programm.

Drag and Drop the new Motion programm to the
EtherCAT task.

46

5.7 PDO Linking

Some PDOs need to be linked with a variable.
The JSC_MC_Library has a IoMap structure

intended for linking variables with PDOs.

5.8 Download the Project

Compile, download and run the project.

This instruction manual contains copyright
protected information. All rights are reserved.
This document may not be entirely or partially

copied, duplicated or translated without the
prior consent of Jenny Science AG.

Jenny Science AG grants no guarantee on, or will

be held responsible for, any incidents resulting
from false information.

Information in this instruction manual might be

subject to change.

Jenny Science AG
Sandblatte 11
CH-6026 Rain

Tel +41 (0) 41 255 25 25

www.jennyscience.ch
info@jennyscience.ch

© C o p y r i g h t J e n n y S c i e n c e A G 2 0 2 4

